通过双重诱饵效应的属性归一化检验

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Remi Daviet , Ryan Webb
{"title":"通过双重诱饵效应的属性归一化检验","authors":"Remi Daviet ,&nbsp;Ryan Webb","doi":"10.1016/j.jmp.2022.102741","DOIUrl":null,"url":null,"abstract":"<div><p>We report a “Double Decoy” experiment designed to separate two competing accounts of the asymmetric dominance effect. The experiment places an additional decoy alternative within the range of existing alternatives, which should leave choice behaviour unaltered if attributes are weighted by their range. Instead, we observe a decrease in the relative proportion of targets chosen, particularly for subjects who exhibited an initial decoy effect. We also observe considerably more variation in individual behaviour than expected. We therefore consider an alternative theory in which attributes values are compared with diminishing sensitivity (via divisive normalization) and assess its performance in an additional discrete choice experiment previously used in the discrete choice literature. We find that divisive normalization captures behaviour better than range normalization and the linear additive Logit model typically used in applied settings. We therefore propose divisive normalization as both a neuro-computational explanation for context effects and a useful empirical tool for applied researchers.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A test of attribute normalization via a double decoy effect\",\"authors\":\"Remi Daviet ,&nbsp;Ryan Webb\",\"doi\":\"10.1016/j.jmp.2022.102741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We report a “Double Decoy” experiment designed to separate two competing accounts of the asymmetric dominance effect. The experiment places an additional decoy alternative within the range of existing alternatives, which should leave choice behaviour unaltered if attributes are weighted by their range. Instead, we observe a decrease in the relative proportion of targets chosen, particularly for subjects who exhibited an initial decoy effect. We also observe considerably more variation in individual behaviour than expected. We therefore consider an alternative theory in which attributes values are compared with diminishing sensitivity (via divisive normalization) and assess its performance in an additional discrete choice experiment previously used in the discrete choice literature. We find that divisive normalization captures behaviour better than range normalization and the linear additive Logit model typically used in applied settings. We therefore propose divisive normalization as both a neuro-computational explanation for context effects and a useful empirical tool for applied researchers.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022249622000797\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022249622000797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 2

摘要

我们报告了一个“双重诱饵”实验,旨在分离不对称优势效应的两个竞争账户。该实验在现有选择的范围内放置了一个额外的诱饵选择,如果属性按其范围加权,则应该保持选择行为不变。相反,我们观察到选择目标的相对比例下降,特别是对于那些表现出最初诱饵效应的受试者。我们还观察到,个体行为的差异比预期的要大得多。因此,我们考虑一种替代理论,其中属性值与递减灵敏度(通过分裂归一化)进行比较,并在先前在离散选择文献中使用的额外离散选择实验中评估其性能。我们发现分裂归一化比范围归一化和线性加性Logit模型更好地捕获行为,通常用于应用设置。因此,我们提出分裂归一化既可以作为上下文效应的神经计算解释,也可以作为应用研究人员的有用经验工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A test of attribute normalization via a double decoy effect

We report a “Double Decoy” experiment designed to separate two competing accounts of the asymmetric dominance effect. The experiment places an additional decoy alternative within the range of existing alternatives, which should leave choice behaviour unaltered if attributes are weighted by their range. Instead, we observe a decrease in the relative proportion of targets chosen, particularly for subjects who exhibited an initial decoy effect. We also observe considerably more variation in individual behaviour than expected. We therefore consider an alternative theory in which attributes values are compared with diminishing sensitivity (via divisive normalization) and assess its performance in an additional discrete choice experiment previously used in the discrete choice literature. We find that divisive normalization captures behaviour better than range normalization and the linear additive Logit model typically used in applied settings. We therefore propose divisive normalization as both a neuro-computational explanation for context effects and a useful empirical tool for applied researchers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信