离子注入对正梯度AlGaN层结构损伤的影响

IF 1.1 Q4 QUANTUM SCIENCE & TECHNOLOGY
O. Liubchenko
{"title":"离子注入对正梯度AlGaN层结构损伤的影响","authors":"O. Liubchenko","doi":"10.15407/spqeo22.01.119","DOIUrl":null,"url":null,"abstract":"Compositionally graded AlxGa1–xN alloys with the Al concentration in the (7 ≤ x ≤ 32) range were implanted with Ar + ions to study the structural and strain changes (strain engineering). It was shown that ion implantation leads to ~0.3...0.46% hydrostatic strains and a relatively low damage of the crystal structure. The ion-implantation leads mainly to an increase of the density of point defects, while the dislocation configuration is almost unaffected. The density of microdefects is sufficiently reduced after the postimplantation annealing. The structural quality of the AlxGa1–xN layers strongly depends on the Al concentration and is worsen with increasing Al. The implantation induced structural changes in highly dislocated AlxGa1–xN layers are generally less pronounced. Based on the X-ray diffraction, a model is developed to explain the strain field behavior in the AlxGa1–xN/GaN heterostructures by migration of point defects and strain field redistribution. The approach to simulate 2θ/ω scans using statistical dynamical theory of X-ray diffraction for implanted compositionally graded structures AlGaN has been developed.","PeriodicalId":44695,"journal":{"name":"Semiconductor Physics Quantum Electronics & Optoelectronics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2019-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The effect of ion implantation on structural damage of сompositionally graded AlGaN layers\",\"authors\":\"O. Liubchenko\",\"doi\":\"10.15407/spqeo22.01.119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compositionally graded AlxGa1–xN alloys with the Al concentration in the (7 ≤ x ≤ 32) range were implanted with Ar + ions to study the structural and strain changes (strain engineering). It was shown that ion implantation leads to ~0.3...0.46% hydrostatic strains and a relatively low damage of the crystal structure. The ion-implantation leads mainly to an increase of the density of point defects, while the dislocation configuration is almost unaffected. The density of microdefects is sufficiently reduced after the postimplantation annealing. The structural quality of the AlxGa1–xN layers strongly depends on the Al concentration and is worsen with increasing Al. The implantation induced structural changes in highly dislocated AlxGa1–xN layers are generally less pronounced. Based on the X-ray diffraction, a model is developed to explain the strain field behavior in the AlxGa1–xN/GaN heterostructures by migration of point defects and strain field redistribution. The approach to simulate 2θ/ω scans using statistical dynamical theory of X-ray diffraction for implanted compositionally graded structures AlGaN has been developed.\",\"PeriodicalId\":44695,\"journal\":{\"name\":\"Semiconductor Physics Quantum Electronics & Optoelectronics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2019-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Semiconductor Physics Quantum Electronics & Optoelectronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/spqeo22.01.119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"QUANTUM SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semiconductor Physics Quantum Electronics & Optoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/spqeo22.01.119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"QUANTUM SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 4

摘要

对Al浓度在(7≤x≤32)范围内的成分梯度AlxGa1-xN合金注入Ar +离子,研究其结构和应变变化(应变工程)。结果表明,离子注入可产生~0.3 ~ 0.46%的静应变,对晶体结构的破坏较小。离子注入主要导致点缺陷密度的增加,而位错形态几乎不受影响。镀后退火能充分降低微缺陷的密度。AlxGa1-xN层的结构质量与Al浓度密切相关,并随着Al浓度的增加而恶化。在高度位错的AlxGa1-xN层中,植入引起的结构变化一般不太明显。基于x射线衍射,建立了用点缺陷迁移和应变场重分布来解释AlxGa1-xN /GaN异质结构中应变场行为的模型。提出了用x射线衍射统计动力学理论模拟注入成分梯度结构AlGaN的2θ/ω扫描的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The effect of ion implantation on structural damage of сompositionally graded AlGaN layers
Compositionally graded AlxGa1–xN alloys with the Al concentration in the (7 ≤ x ≤ 32) range were implanted with Ar + ions to study the structural and strain changes (strain engineering). It was shown that ion implantation leads to ~0.3...0.46% hydrostatic strains and a relatively low damage of the crystal structure. The ion-implantation leads mainly to an increase of the density of point defects, while the dislocation configuration is almost unaffected. The density of microdefects is sufficiently reduced after the postimplantation annealing. The structural quality of the AlxGa1–xN layers strongly depends on the Al concentration and is worsen with increasing Al. The implantation induced structural changes in highly dislocated AlxGa1–xN layers are generally less pronounced. Based on the X-ray diffraction, a model is developed to explain the strain field behavior in the AlxGa1–xN/GaN heterostructures by migration of point defects and strain field redistribution. The approach to simulate 2θ/ω scans using statistical dynamical theory of X-ray diffraction for implanted compositionally graded structures AlGaN has been developed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
22.20%
发文量
43
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信