{"title":"一阶非局部平均场对策的傅立叶近似方法","authors":"L. Nurbekyan, João Saúde","doi":"10.4171/pm/2023","DOIUrl":null,"url":null,"abstract":"In this note, we develop Fourier approximation methods for the solutions of first-order nonlocal mean-field games (MFG) systems. Using Fourier expansion techniques, we approximate a given MFG system by a simpler one that is equivalent to a convex optimization problem over a finite-dimensional subspace of continuous curves. Furthermore, we perform a time-discretization for this optimization problem and arrive at a finite-dimensional saddle point problem. Finally, we solve this saddle-point problem by a variant of a primal dual hybrid gradient method.","PeriodicalId":51269,"journal":{"name":"Portugaliae Mathematica","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2018-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/pm/2023","citationCount":"18","resultStr":"{\"title\":\"Fourier approximation methods for first-order nonlocal mean-field games\",\"authors\":\"L. Nurbekyan, João Saúde\",\"doi\":\"10.4171/pm/2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note, we develop Fourier approximation methods for the solutions of first-order nonlocal mean-field games (MFG) systems. Using Fourier expansion techniques, we approximate a given MFG system by a simpler one that is equivalent to a convex optimization problem over a finite-dimensional subspace of continuous curves. Furthermore, we perform a time-discretization for this optimization problem and arrive at a finite-dimensional saddle point problem. Finally, we solve this saddle-point problem by a variant of a primal dual hybrid gradient method.\",\"PeriodicalId\":51269,\"journal\":{\"name\":\"Portugaliae Mathematica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4171/pm/2023\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Portugaliae Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/pm/2023\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Portugaliae Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/pm/2023","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Fourier approximation methods for first-order nonlocal mean-field games
In this note, we develop Fourier approximation methods for the solutions of first-order nonlocal mean-field games (MFG) systems. Using Fourier expansion techniques, we approximate a given MFG system by a simpler one that is equivalent to a convex optimization problem over a finite-dimensional subspace of continuous curves. Furthermore, we perform a time-discretization for this optimization problem and arrive at a finite-dimensional saddle point problem. Finally, we solve this saddle-point problem by a variant of a primal dual hybrid gradient method.
期刊介绍:
Since its foundation in 1937, Portugaliae Mathematica has aimed at publishing high-level research articles in all branches of mathematics. With great efforts by its founders, the journal was able to publish articles by some of the best mathematicians of the time. In 2001 a New Series of Portugaliae Mathematica was started, reaffirming the purpose of maintaining a high-level research journal in mathematics with a wide range scope.