{"title":"无否定直觉数学中的否定","authors":"Thomas Macaulay Ferguson","doi":"10.1093/philmat/nkac026","DOIUrl":null,"url":null,"abstract":"The mathematician G.F.C. Griss is known for his program of negationless intuitionistic mathematics. Although Griss's rejection of negation is regarded as characteristic of his philosophy, this is a consequence of an executability requirement that mental constructions presuppose agents’ executing corresponding mental activity. Restoring Griss's executability requirement to a central role permits a more subtle characterization of the rejection of negation, according to which D. Nelson's strong constructible negation is compatible with Griss's principles. This exposes a ‘holographic’ theory of negation in negationless mathematics, in which a full theory of negation is ‘flattened’ in a putatively negationless setting.","PeriodicalId":49004,"journal":{"name":"Philosophia Mathematica","volume":"31 1","pages":"29-55"},"PeriodicalIF":0.8000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Negation in Negationless Intuitionistic Mathematics\",\"authors\":\"Thomas Macaulay Ferguson\",\"doi\":\"10.1093/philmat/nkac026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The mathematician G.F.C. Griss is known for his program of negationless intuitionistic mathematics. Although Griss's rejection of negation is regarded as characteristic of his philosophy, this is a consequence of an executability requirement that mental constructions presuppose agents’ executing corresponding mental activity. Restoring Griss's executability requirement to a central role permits a more subtle characterization of the rejection of negation, according to which D. Nelson's strong constructible negation is compatible with Griss's principles. This exposes a ‘holographic’ theory of negation in negationless mathematics, in which a full theory of negation is ‘flattened’ in a putatively negationless setting.\",\"PeriodicalId\":49004,\"journal\":{\"name\":\"Philosophia Mathematica\",\"volume\":\"31 1\",\"pages\":\"29-55\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophia Mathematica\",\"FirstCategoryId\":\"98\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10056827/\",\"RegionNum\":1,\"RegionCategory\":\"哲学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HISTORY & PHILOSOPHY OF SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophia Mathematica","FirstCategoryId":"98","ListUrlMain":"https://ieeexplore.ieee.org/document/10056827/","RegionNum":1,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HISTORY & PHILOSOPHY OF SCIENCE","Score":null,"Total":0}
Negation in Negationless Intuitionistic Mathematics
The mathematician G.F.C. Griss is known for his program of negationless intuitionistic mathematics. Although Griss's rejection of negation is regarded as characteristic of his philosophy, this is a consequence of an executability requirement that mental constructions presuppose agents’ executing corresponding mental activity. Restoring Griss's executability requirement to a central role permits a more subtle characterization of the rejection of negation, according to which D. Nelson's strong constructible negation is compatible with Griss's principles. This exposes a ‘holographic’ theory of negation in negationless mathematics, in which a full theory of negation is ‘flattened’ in a putatively negationless setting.
期刊介绍:
Philosophia Mathematica is the only journal in the world devoted specifically to philosophy of mathematics. The journal publishes peer-reviewed new work in philosophy of mathematics, the application of mathematics, and computing. In addition to main articles, sometimes grouped on a single theme, there are shorter discussion notes, letters, and book reviews. The journal is published online-only, with three issues published per year.