不锈钢丝弧增材制造的腐蚀性能:简要的临界评价

IF 2.3 4区 工程技术 Q3 ENGINEERING, MANUFACTURING
3D Printing and Additive Manufacturing Pub Date : 2024-04-01 Epub Date: 2024-04-16 DOI:10.1089/3dp.2022.0253
Babatunde Olamide Omiyale, Ikeoluwa Ireoluwa Ogedengbe, Temitope Olumide Olugbade, Peter Kayode Farayibi
{"title":"不锈钢丝弧增材制造的腐蚀性能:简要的临界评价","authors":"Babatunde Olamide Omiyale, Ikeoluwa Ireoluwa Ogedengbe, Temitope Olumide Olugbade, Peter Kayode Farayibi","doi":"10.1089/3dp.2022.0253","DOIUrl":null,"url":null,"abstract":"<p><p>To enhance the products fabricated from wire arc additive manufacturing (WAAM) processes, it is very important to implement a critical assessment of the corrosion performance of additively manufactured stainless steel (SS) for the application of additive manufacturing parts widely used in industries. The common defects in metal additive manufacturing, which include porosity, poor surface finish, oxidation, environmental factor, residual stress, and microstructural defects, are known to significantly influence the corrosion behavior of WAAM-processed SS components prepared to be used under different corrosive and marine environments. This article reviews the recently published works on WAAM-processed SS and provides a critical overview method to improve the corrosion performance of SS components built with the WAAM processes. It also documents some significant factors that determine the corrosion resistance of WAAM-processed SS and identifies key areas for future work.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11057549/pdf/","citationCount":"0","resultStr":"{\"title\":\"Corrosion Performance of Wire Arc Additive Manufacturing of Stainless Steel: A Brief Critical Assessment.\",\"authors\":\"Babatunde Olamide Omiyale, Ikeoluwa Ireoluwa Ogedengbe, Temitope Olumide Olugbade, Peter Kayode Farayibi\",\"doi\":\"10.1089/3dp.2022.0253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To enhance the products fabricated from wire arc additive manufacturing (WAAM) processes, it is very important to implement a critical assessment of the corrosion performance of additively manufactured stainless steel (SS) for the application of additive manufacturing parts widely used in industries. The common defects in metal additive manufacturing, which include porosity, poor surface finish, oxidation, environmental factor, residual stress, and microstructural defects, are known to significantly influence the corrosion behavior of WAAM-processed SS components prepared to be used under different corrosive and marine environments. This article reviews the recently published works on WAAM-processed SS and provides a critical overview method to improve the corrosion performance of SS components built with the WAAM processes. It also documents some significant factors that determine the corrosion resistance of WAAM-processed SS and identifies key areas for future work.</p>\",\"PeriodicalId\":54341,\"journal\":{\"name\":\"3D Printing and Additive Manufacturing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11057549/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3D Printing and Additive Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1089/3dp.2022.0253\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/4/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D Printing and Additive Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1089/3dp.2022.0253","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

为了提高线弧快速成型制造(WAAM)工艺制造的产品性能,对快速成型制造的不锈钢(SS)的腐蚀性能进行严格评估非常重要,因为快速成型制造的零件在工业中应用广泛。众所周知,金属增材制造中常见的缺陷包括气孔、表面光洁度差、氧化、环境因素、残余应力和微结构缺陷,这些缺陷会严重影响准备在不同腐蚀性和海洋环境下使用的 WAAM 加工不锈钢部件的腐蚀性能。本文回顾了最近发表的有关 WAAM 加工固态金属的著作,并提供了一种重要的概述方法,以改善采用 WAAM 工艺制造的固态金属部件的腐蚀性能。文章还记录了决定 WAAM 加工的 SS 耐腐蚀性能的一些重要因素,并确定了未来工作的关键领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Corrosion Performance of Wire Arc Additive Manufacturing of Stainless Steel: A Brief Critical Assessment.

To enhance the products fabricated from wire arc additive manufacturing (WAAM) processes, it is very important to implement a critical assessment of the corrosion performance of additively manufactured stainless steel (SS) for the application of additive manufacturing parts widely used in industries. The common defects in metal additive manufacturing, which include porosity, poor surface finish, oxidation, environmental factor, residual stress, and microstructural defects, are known to significantly influence the corrosion behavior of WAAM-processed SS components prepared to be used under different corrosive and marine environments. This article reviews the recently published works on WAAM-processed SS and provides a critical overview method to improve the corrosion performance of SS components built with the WAAM processes. It also documents some significant factors that determine the corrosion resistance of WAAM-processed SS and identifies key areas for future work.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
3D Printing and Additive Manufacturing
3D Printing and Additive Manufacturing Materials Science-Materials Science (miscellaneous)
CiteScore
6.00
自引率
6.50%
发文量
126
期刊介绍: 3D Printing and Additive Manufacturing is a peer-reviewed journal that provides a forum for world-class research in additive manufacturing and related technologies. The Journal explores emerging challenges and opportunities ranging from new developments of processes and materials, to new simulation and design tools, and informative applications and case studies. Novel applications in new areas, such as medicine, education, bio-printing, food printing, art and architecture, are also encouraged. The Journal addresses the important questions surrounding this powerful and growing field, including issues in policy and law, intellectual property, data standards, safety and liability, environmental impact, social, economic, and humanitarian implications, and emerging business models at the industrial and consumer scales.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信