随机微分方程解的离散重复观测漂移的脊估计

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Christophe Denis, C. Dion-Blanc, Miguel Martinez
{"title":"随机微分方程解的离散重复观测漂移的脊估计","authors":"Christophe Denis, C. Dion-Blanc, Miguel Martinez","doi":"10.3150/21-BEJ1327","DOIUrl":null,"url":null,"abstract":"This work focuses on the nonparametric estimation of a drift function from N discrete repeated independent observations of a diffusion process over a fixed time interval [0, T ]. We study a ridge estimator obtained by the minimization of a constrained least squares contrast. The resulting projection estimator is based on the B-spline basis. Under mild assumptions, this estimator is universally consistent with respect to an integrate norm. We establish that, up to a logarithmic factor and when the estimation is performed on a compact interval, our estimation procedure reaches the best possible rate of convergence. Furthermore, we build an adaptive estimator that achieves this rate. Finally, we illustrate our procedure through an intensive simulation study which highlights the good performance of the proposed estimator in various models.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A ridge estimator of the drift from discrete repeated observations of the solution of a stochastic differential equation\",\"authors\":\"Christophe Denis, C. Dion-Blanc, Miguel Martinez\",\"doi\":\"10.3150/21-BEJ1327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work focuses on the nonparametric estimation of a drift function from N discrete repeated independent observations of a diffusion process over a fixed time interval [0, T ]. We study a ridge estimator obtained by the minimization of a constrained least squares contrast. The resulting projection estimator is based on the B-spline basis. Under mild assumptions, this estimator is universally consistent with respect to an integrate norm. We establish that, up to a logarithmic factor and when the estimation is performed on a compact interval, our estimation procedure reaches the best possible rate of convergence. Furthermore, we build an adaptive estimator that achieves this rate. Finally, we illustrate our procedure through an intensive simulation study which highlights the good performance of the proposed estimator in various models.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3150/21-BEJ1327\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3150/21-BEJ1327","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 10

摘要

这项工作的重点是非参数估计漂移函数从N个离散重复独立的观测扩散过程在一个固定的时间间隔[0,T]。研究了由约束最小二乘对比最小化得到的脊估计。得到的投影估计量是基于b样条基的。在温和的假设下,这个估计量对于一个积分范数是普遍一致的。我们证明,在一个对数因子范围内,当在一个紧的区间上进行估计时,我们的估计过程达到了可能的最佳收敛速度。此外,我们建立了一个自适应估计器来实现这个速率。最后,我们通过密集的仿真研究来说明我们的过程,该研究突出了所提出的估计器在各种模型中的良好性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A ridge estimator of the drift from discrete repeated observations of the solution of a stochastic differential equation
This work focuses on the nonparametric estimation of a drift function from N discrete repeated independent observations of a diffusion process over a fixed time interval [0, T ]. We study a ridge estimator obtained by the minimization of a constrained least squares contrast. The resulting projection estimator is based on the B-spline basis. Under mild assumptions, this estimator is universally consistent with respect to an integrate norm. We establish that, up to a logarithmic factor and when the estimation is performed on a compact interval, our estimation procedure reaches the best possible rate of convergence. Furthermore, we build an adaptive estimator that achieves this rate. Finally, we illustrate our procedure through an intensive simulation study which highlights the good performance of the proposed estimator in various models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信