{"title":"基于硅集成波导的正交相移键控信号的光学似然计算","authors":"Yohei Aikawa","doi":"10.1049/ote2.12071","DOIUrl":null,"url":null,"abstract":"<p>All-optical likelihood calculation has the potential to improve the performance of operating speed and power consumption in future communication systems. The author previously proposed a novel scheme of likelihood calculation, which is capable of applying multi-value modulation. However, these studies have a limitation that requires higher integration into an actual system. In this study, an optical device of likelihood calculation for a 4-bit quadrature phase-shift keying (QPSK) modulated signal (i.e. two sequential QPSK symbols) is demonstrated. The integrated device consists of two delayed interferometers with silicon waveguide. The device is designed according to the types of 4-bit code string as follows (00 00), (00 11), (11 00), and (11 11), and the output light waveform from the device is observed by an oscilloscope for a plurality of 4-bit QPSK signals. The light intensity obtained from the device accurately corresponds to the Hamming distance between the code string and the input signal. The results indicate that the proposed scheme correctly calculates a likelihood for a 4-bit QPSK signal at 10 Gbaud.</p>","PeriodicalId":13408,"journal":{"name":"Iet Optoelectronics","volume":"16 4","pages":"188-194"},"PeriodicalIF":2.3000,"publicationDate":"2022-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/ote2.12071","citationCount":"0","resultStr":"{\"title\":\"Optical likelihood calculation for quadrature phase-shift keying signal based on silicon integrated waveguide\",\"authors\":\"Yohei Aikawa\",\"doi\":\"10.1049/ote2.12071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>All-optical likelihood calculation has the potential to improve the performance of operating speed and power consumption in future communication systems. The author previously proposed a novel scheme of likelihood calculation, which is capable of applying multi-value modulation. However, these studies have a limitation that requires higher integration into an actual system. In this study, an optical device of likelihood calculation for a 4-bit quadrature phase-shift keying (QPSK) modulated signal (i.e. two sequential QPSK symbols) is demonstrated. The integrated device consists of two delayed interferometers with silicon waveguide. The device is designed according to the types of 4-bit code string as follows (00 00), (00 11), (11 00), and (11 11), and the output light waveform from the device is observed by an oscilloscope for a plurality of 4-bit QPSK signals. The light intensity obtained from the device accurately corresponds to the Hamming distance between the code string and the input signal. The results indicate that the proposed scheme correctly calculates a likelihood for a 4-bit QPSK signal at 10 Gbaud.</p>\",\"PeriodicalId\":13408,\"journal\":{\"name\":\"Iet Optoelectronics\",\"volume\":\"16 4\",\"pages\":\"188-194\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/ote2.12071\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Optoelectronics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/ote2.12071\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Optoelectronics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ote2.12071","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Optical likelihood calculation for quadrature phase-shift keying signal based on silicon integrated waveguide
All-optical likelihood calculation has the potential to improve the performance of operating speed and power consumption in future communication systems. The author previously proposed a novel scheme of likelihood calculation, which is capable of applying multi-value modulation. However, these studies have a limitation that requires higher integration into an actual system. In this study, an optical device of likelihood calculation for a 4-bit quadrature phase-shift keying (QPSK) modulated signal (i.e. two sequential QPSK symbols) is demonstrated. The integrated device consists of two delayed interferometers with silicon waveguide. The device is designed according to the types of 4-bit code string as follows (00 00), (00 11), (11 00), and (11 11), and the output light waveform from the device is observed by an oscilloscope for a plurality of 4-bit QPSK signals. The light intensity obtained from the device accurately corresponds to the Hamming distance between the code string and the input signal. The results indicate that the proposed scheme correctly calculates a likelihood for a 4-bit QPSK signal at 10 Gbaud.
期刊介绍:
IET Optoelectronics publishes state of the art research papers in the field of optoelectronics and photonics. The topics that are covered by the journal include optical and optoelectronic materials, nanophotonics, metamaterials and photonic crystals, light sources (e.g. LEDs, lasers and devices for lighting), optical modulation and multiplexing, optical fibres, cables and connectors, optical amplifiers, photodetectors and optical receivers, photonic integrated circuits, photonic systems, optical signal processing and holography and displays.
Most of the papers published describe original research from universities and industrial and government laboratories. However correspondence suggesting review papers and tutorials is welcomed, as are suggestions for special issues.
IET Optoelectronics covers but is not limited to the following topics:
Optical and optoelectronic materials
Light sources, including LEDs, lasers and devices for lighting
Optical modulation and multiplexing
Optical fibres, cables and connectors
Optical amplifiers
Photodetectors and optical receivers
Photonic integrated circuits
Nanophotonics and photonic crystals
Optical signal processing
Holography
Displays