{"title":"随机强迫动力学方程中的扩散近似","authors":"A. Debussche, J. Vovelle","doi":"10.2140/TUNIS.2021.3.1","DOIUrl":null,"url":null,"abstract":"We derive the hydrodynamic limit of a kinetic equation where the interactions in velocity are modelled by a linear operator (Fokker-Planck or Linear Boltzmann) and the force in the Vlasov term is a stochastic process with high amplitude and short-range correlation. In the scales and the regime we consider, the hydrodynamic equation is a scalar second-order stochastic partial differential equation. Compared to the deterministic case, we also observe a phenomenon of enhanced diffusion.","PeriodicalId":36030,"journal":{"name":"Tunisian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2017-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2140/TUNIS.2021.3.1","citationCount":"11","resultStr":"{\"title\":\"Diffusion-approximation in stochastically forced kinetic equations\",\"authors\":\"A. Debussche, J. Vovelle\",\"doi\":\"10.2140/TUNIS.2021.3.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We derive the hydrodynamic limit of a kinetic equation where the interactions in velocity are modelled by a linear operator (Fokker-Planck or Linear Boltzmann) and the force in the Vlasov term is a stochastic process with high amplitude and short-range correlation. In the scales and the regime we consider, the hydrodynamic equation is a scalar second-order stochastic partial differential equation. Compared to the deterministic case, we also observe a phenomenon of enhanced diffusion.\",\"PeriodicalId\":36030,\"journal\":{\"name\":\"Tunisian Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2017-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2140/TUNIS.2021.3.1\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tunisian Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/TUNIS.2021.3.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunisian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/TUNIS.2021.3.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Diffusion-approximation in stochastically forced kinetic equations
We derive the hydrodynamic limit of a kinetic equation where the interactions in velocity are modelled by a linear operator (Fokker-Planck or Linear Boltzmann) and the force in the Vlasov term is a stochastic process with high amplitude and short-range correlation. In the scales and the regime we consider, the hydrodynamic equation is a scalar second-order stochastic partial differential equation. Compared to the deterministic case, we also observe a phenomenon of enhanced diffusion.