一种手持电子设备,具有从呼出的气体中检测肺癌生物标志物的潜力

IF 3 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Shadi Emam, Mehdi Nasrollahpour, John Patrick Allen, Yifan He, Hussein Hussein, Harsh Shailesh Shah, Fariborz Tavangarian, Nian-Xiang Sun
{"title":"一种手持电子设备,具有从呼出的气体中检测肺癌生物标志物的潜力","authors":"Shadi Emam,&nbsp;Mehdi Nasrollahpour,&nbsp;John Patrick Allen,&nbsp;Yifan He,&nbsp;Hussein Hussein,&nbsp;Harsh Shailesh Shah,&nbsp;Fariborz Tavangarian,&nbsp;Nian-Xiang Sun","doi":"10.1007/s10544-022-00638-8","DOIUrl":null,"url":null,"abstract":"<div><p>Lung cancer is the leading cause of cancer death in the United States. It has the lowest 5-year survival rate among the most common cancers and therefore, early diagnosis is critical to improve the survival rate. In this paper, a new handheld electronic device is proposed to detect nine lung cancer biomarkers in the exhaled breath. An electrochemical gas sensor was produced through deposition of a thin layer of graphene and Prussian blue on a chromium-modified silicon substrate. Selective binding of the analyte was formed by molecular imprinting polymer (MIP). Subsequent polymerization and removal of the analyte yielded a layer of a conductive polymer on top of the sensor containing molecularly imprinted cavities selective for the target molecule. The sensors were tested over 1–20 parts per trillion (ppt) level of concentration while the sensor resistance has been monitored as the sensors react to the analyte by resistance change. Pentane sensor was also tested for selectivity. A printed circuit board was designed to measure the resistance of each sensor and send the data to a developed application in smartphone through Bluetooth. This handheld device has the potential to be used as a diagnostic method in the near future.</p><h3>Graphical Abstract</h3>\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n </div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"24 4","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2022-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A handheld electronic device with the potential to detect lung cancer biomarkers from exhaled breath\",\"authors\":\"Shadi Emam,&nbsp;Mehdi Nasrollahpour,&nbsp;John Patrick Allen,&nbsp;Yifan He,&nbsp;Hussein Hussein,&nbsp;Harsh Shailesh Shah,&nbsp;Fariborz Tavangarian,&nbsp;Nian-Xiang Sun\",\"doi\":\"10.1007/s10544-022-00638-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Lung cancer is the leading cause of cancer death in the United States. It has the lowest 5-year survival rate among the most common cancers and therefore, early diagnosis is critical to improve the survival rate. In this paper, a new handheld electronic device is proposed to detect nine lung cancer biomarkers in the exhaled breath. An electrochemical gas sensor was produced through deposition of a thin layer of graphene and Prussian blue on a chromium-modified silicon substrate. Selective binding of the analyte was formed by molecular imprinting polymer (MIP). Subsequent polymerization and removal of the analyte yielded a layer of a conductive polymer on top of the sensor containing molecularly imprinted cavities selective for the target molecule. The sensors were tested over 1–20 parts per trillion (ppt) level of concentration while the sensor resistance has been monitored as the sensors react to the analyte by resistance change. Pentane sensor was also tested for selectivity. A printed circuit board was designed to measure the resistance of each sensor and send the data to a developed application in smartphone through Bluetooth. This handheld device has the potential to be used as a diagnostic method in the near future.</p><h3>Graphical Abstract</h3>\\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\\n </div>\",\"PeriodicalId\":490,\"journal\":{\"name\":\"Biomedical Microdevices\",\"volume\":\"24 4\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2022-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Microdevices\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10544-022-00638-8\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Microdevices","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10544-022-00638-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 5

摘要

肺癌是美国癌症死亡的主要原因。在最常见的癌症中,它的5年生存率最低,因此,早期诊断对提高生存率至关重要。本文提出了一种新的手持式电子设备,用于检测呼出气体中的九种肺癌生物标志物。通过在铬修饰的硅衬底上沉积薄层石墨烯和普鲁士蓝,制备了电化学气体传感器。通过分子印迹聚合物(MIP)形成分析物的选择性结合。随后的聚合和分析物的去除产生了一层导电聚合物,该聚合物位于传感器的顶部,该传感器包含对目标分子有选择性的分子印迹空腔。在1-20万亿分之一(ppt)浓度水平下测试传感器,同时监测传感器电阻,因为传感器通过电阻变化对分析物作出反应。并对戊烷传感器的选择性进行了测试。设计了一个印刷电路板来测量每个传感器的电阻,并通过蓝牙将数据发送到智能手机的开发应用程序中。这种手持设备在不久的将来有可能被用作一种诊断方法。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A handheld electronic device with the potential to detect lung cancer biomarkers from exhaled breath

A handheld electronic device with the potential to detect lung cancer biomarkers from exhaled breath

Lung cancer is the leading cause of cancer death in the United States. It has the lowest 5-year survival rate among the most common cancers and therefore, early diagnosis is critical to improve the survival rate. In this paper, a new handheld electronic device is proposed to detect nine lung cancer biomarkers in the exhaled breath. An electrochemical gas sensor was produced through deposition of a thin layer of graphene and Prussian blue on a chromium-modified silicon substrate. Selective binding of the analyte was formed by molecular imprinting polymer (MIP). Subsequent polymerization and removal of the analyte yielded a layer of a conductive polymer on top of the sensor containing molecularly imprinted cavities selective for the target molecule. The sensors were tested over 1–20 parts per trillion (ppt) level of concentration while the sensor resistance has been monitored as the sensors react to the analyte by resistance change. Pentane sensor was also tested for selectivity. A printed circuit board was designed to measure the resistance of each sensor and send the data to a developed application in smartphone through Bluetooth. This handheld device has the potential to be used as a diagnostic method in the near future.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical Microdevices
Biomedical Microdevices 工程技术-工程:生物医学
CiteScore
6.90
自引率
3.60%
发文量
32
审稿时长
6 months
期刊介绍: Biomedical Microdevices: BioMEMS and Biomedical Nanotechnology is an interdisciplinary periodical devoted to all aspects of research in the medical diagnostic and therapeutic applications of Micro-Electro-Mechanical Systems (BioMEMS) and nanotechnology for medicine and biology. General subjects of interest include the design, characterization, testing, modeling and clinical validation of microfabricated systems, and their integration on-chip and in larger functional units. The specific interests of the Journal include systems for neural stimulation and recording, bioseparation technologies such as nanofilters and electrophoretic equipment, miniaturized analytic and DNA identification systems, biosensors, and micro/nanotechnologies for cell and tissue research, tissue engineering, cell transplantation, and the controlled release of drugs and biological molecules. Contributions reporting on fundamental and applied investigations of the material science, biochemistry, and physics of biomedical microdevices and nanotechnology are encouraged. A non-exhaustive list of fields of interest includes: nanoparticle synthesis, characterization, and validation of therapeutic or imaging efficacy in animal models; biocompatibility; biochemical modification of microfabricated devices, with reference to non-specific protein adsorption, and the active immobilization and patterning of proteins on micro/nanofabricated surfaces; the dynamics of fluids in micro-and-nano-fabricated channels; the electromechanical and structural response of micro/nanofabricated systems; the interactions of microdevices with cells and tissues, including biocompatibility and biodegradation studies; variations in the characteristics of the systems as a function of the micro/nanofabrication parameters.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信