Cinira Mello Santana, Thaís Luz de Sousa, Abdon Luiz Ornelas Latif, Lorena Santos Lobo, Gleice Rayanne da Silva, Hemerson Iury Ferreira Magalhães, Mariângela Vieira Lopes, Clícia Maria de Jesus Benevides, Rennan Geovanny Oliveira Araujo, Daniele Cristina Muniz Batista dos Santos, Aníbal de Freitas Santos Júnior
{"title":"使用ICP OES测定巴西消费的眼影中的多元素(必需元素和潜在有毒元素)","authors":"Cinira Mello Santana, Thaís Luz de Sousa, Abdon Luiz Ornelas Latif, Lorena Santos Lobo, Gleice Rayanne da Silva, Hemerson Iury Ferreira Magalhães, Mariângela Vieira Lopes, Clícia Maria de Jesus Benevides, Rennan Geovanny Oliveira Araujo, Daniele Cristina Muniz Batista dos Santos, Aníbal de Freitas Santos Júnior","doi":"10.1007/s10534-022-00444-y","DOIUrl":null,"url":null,"abstract":"<div><p>Worldwide, cosmetics (especially eye shadows) are widely consumed and have a great impact on the economy. The aim of this study was to determine the multielement composition, focusing on essential and potentially toxic elements, in cosmetics (eye shadow) exposed to consumption in Brazil. Concentrations of 17 elements (Al, As, Ba, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Se, Sr, Ti, V and Zn) were determined in samples (produced in China and Brazil) using a sequential optical emission spectrometer with inductively coupled plasma (ICP OES) after acid digestion, assisted by a closed digester block (6 mL of HNO<sub>3</sub> + 2 mL of H<sub>2</sub>O<sub>2</sub> + 1 mL of Triton ×-100 + 1 mL of ultrapure water). The method was validated by linearity, precision, accuracy, limits of detection (LoD) and quantification (LoQ). The elements were quantified (in µg g<sup>−1</sup>): Al (852–21,900), Ba (3.47–104), Cd (1.70–6.93), Cr (< 8.53–66.6), Cu (< 0.480–14.5), Mn (92.20–1,190), Ni (< 4.23–40.7), Pb (< 2.16–5.06), Sb (1.10–10.5), Sr (0.760–46.0), Ti (32.0–440), V (< 0.85–1.7) and Zn (24.90–2,600). As, Co, Mo and Se in all the investigated samples were found to be below the LoQ values of ICP OES. In this study, regardless of sample compositions and origins (Brazilian or Chinese), high levels of Al, Cd, Cr, Cu, Mn, Ni, Pb, Sb, Ti, V and Zn were observed, exceeding the recommended maximum tolerable limits, according to Brazilian and global legislations, which may present potential risks to human health and the environment.</p><h3>Graphical abstract</h3>\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n </div>","PeriodicalId":491,"journal":{"name":"Biometals","volume":"35 6","pages":"1281 - 1297"},"PeriodicalIF":4.1000,"publicationDate":"2022-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10534-022-00444-y.pdf","citationCount":"4","resultStr":"{\"title\":\"Multielement determination (essential and potentially toxic elements) in eye shadows exposed to consumption in Brazil using ICP OES\",\"authors\":\"Cinira Mello Santana, Thaís Luz de Sousa, Abdon Luiz Ornelas Latif, Lorena Santos Lobo, Gleice Rayanne da Silva, Hemerson Iury Ferreira Magalhães, Mariângela Vieira Lopes, Clícia Maria de Jesus Benevides, Rennan Geovanny Oliveira Araujo, Daniele Cristina Muniz Batista dos Santos, Aníbal de Freitas Santos Júnior\",\"doi\":\"10.1007/s10534-022-00444-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Worldwide, cosmetics (especially eye shadows) are widely consumed and have a great impact on the economy. The aim of this study was to determine the multielement composition, focusing on essential and potentially toxic elements, in cosmetics (eye shadow) exposed to consumption in Brazil. Concentrations of 17 elements (Al, As, Ba, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Se, Sr, Ti, V and Zn) were determined in samples (produced in China and Brazil) using a sequential optical emission spectrometer with inductively coupled plasma (ICP OES) after acid digestion, assisted by a closed digester block (6 mL of HNO<sub>3</sub> + 2 mL of H<sub>2</sub>O<sub>2</sub> + 1 mL of Triton ×-100 + 1 mL of ultrapure water). The method was validated by linearity, precision, accuracy, limits of detection (LoD) and quantification (LoQ). The elements were quantified (in µg g<sup>−1</sup>): Al (852–21,900), Ba (3.47–104), Cd (1.70–6.93), Cr (< 8.53–66.6), Cu (< 0.480–14.5), Mn (92.20–1,190), Ni (< 4.23–40.7), Pb (< 2.16–5.06), Sb (1.10–10.5), Sr (0.760–46.0), Ti (32.0–440), V (< 0.85–1.7) and Zn (24.90–2,600). As, Co, Mo and Se in all the investigated samples were found to be below the LoQ values of ICP OES. In this study, regardless of sample compositions and origins (Brazilian or Chinese), high levels of Al, Cd, Cr, Cu, Mn, Ni, Pb, Sb, Ti, V and Zn were observed, exceeding the recommended maximum tolerable limits, according to Brazilian and global legislations, which may present potential risks to human health and the environment.</p><h3>Graphical abstract</h3>\\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\\n </div>\",\"PeriodicalId\":491,\"journal\":{\"name\":\"Biometals\",\"volume\":\"35 6\",\"pages\":\"1281 - 1297\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2022-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10534-022-00444-y.pdf\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometals\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10534-022-00444-y\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometals","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10534-022-00444-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Multielement determination (essential and potentially toxic elements) in eye shadows exposed to consumption in Brazil using ICP OES
Worldwide, cosmetics (especially eye shadows) are widely consumed and have a great impact on the economy. The aim of this study was to determine the multielement composition, focusing on essential and potentially toxic elements, in cosmetics (eye shadow) exposed to consumption in Brazil. Concentrations of 17 elements (Al, As, Ba, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Se, Sr, Ti, V and Zn) were determined in samples (produced in China and Brazil) using a sequential optical emission spectrometer with inductively coupled plasma (ICP OES) after acid digestion, assisted by a closed digester block (6 mL of HNO3 + 2 mL of H2O2 + 1 mL of Triton ×-100 + 1 mL of ultrapure water). The method was validated by linearity, precision, accuracy, limits of detection (LoD) and quantification (LoQ). The elements were quantified (in µg g−1): Al (852–21,900), Ba (3.47–104), Cd (1.70–6.93), Cr (< 8.53–66.6), Cu (< 0.480–14.5), Mn (92.20–1,190), Ni (< 4.23–40.7), Pb (< 2.16–5.06), Sb (1.10–10.5), Sr (0.760–46.0), Ti (32.0–440), V (< 0.85–1.7) and Zn (24.90–2,600). As, Co, Mo and Se in all the investigated samples were found to be below the LoQ values of ICP OES. In this study, regardless of sample compositions and origins (Brazilian or Chinese), high levels of Al, Cd, Cr, Cu, Mn, Ni, Pb, Sb, Ti, V and Zn were observed, exceeding the recommended maximum tolerable limits, according to Brazilian and global legislations, which may present potential risks to human health and the environment.
期刊介绍:
BioMetals is the only established journal to feature the important role of metal ions in chemistry, biology, biochemistry, environmental science, and medicine. BioMetals is an international, multidisciplinary journal singularly devoted to the rapid publication of the fundamental advances of both basic and applied research in this field. BioMetals offers a forum for innovative research and clinical results on the structure and function of:
- metal ions
- metal chelates,
- siderophores,
- metal-containing proteins
- biominerals in all biosystems.
- BioMetals rapidly publishes original articles and reviews.
BioMetals is a journal for metals researchers who practice in medicine, biochemistry, pharmacology, toxicology, microbiology, cell biology, chemistry, and plant physiology who are based academic, industrial and government laboratories.