太阳能热发电厂的热力学循环:综述

IF 5.4 3区 工程技术 Q2 ENERGY & FUELS
Marta Muñoz, A. Rovira, M. J. Montes
{"title":"太阳能热发电厂的热力学循环:综述","authors":"Marta Muñoz, A. Rovira, M. J. Montes","doi":"10.1002/wene.420","DOIUrl":null,"url":null,"abstract":"Solar thermal power plants for electricity production include, at least, two main systems: the solar field and the power block. Regarding this last one, the particular thermodynamic cycle layout and the working fluid employed, have a decisive influence in the plant performance. In turn, this selection depends on the solar technology employed. Currently, the steam Rankine cycle is the most widespread and commercially available option, usually coupled to a parabolic trough solar field. However, other configurations have been implemented in solar thermal plants worldwide. Most of them are based on other solar technologies also coupled to a steam Rankine cycle, although integrated solar combined cycles have a significant level of implementation. In the first place, power block configurations based on conventional thermodynamic cycles—Rankine, Brayton, and combined Brayton–Rankine—are described. The achievements and challenges of each proposal are highlighted, for example, the benefits involved in hybrid solar source/fossil fuel plants. In the second place, proposals of advanced power block configurations are analyzed, standing out: supercritical CO2 Brayton cycles, advanced organic Rankine cycles, and innovative integrated solar combined cycles. Each of these proposals shows some advantages compared to the conventional layouts in certain power or source temperature ranges and hence they could be considered attractive options in the medium term. At last, a brief review of proposals of solar thermal integration with other renewable heat sources is also included.","PeriodicalId":48766,"journal":{"name":"Wiley Interdisciplinary Reviews-Energy and Environment","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2021-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Thermodynamic cycles for solar thermal power plants: A review\",\"authors\":\"Marta Muñoz, A. Rovira, M. J. Montes\",\"doi\":\"10.1002/wene.420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solar thermal power plants for electricity production include, at least, two main systems: the solar field and the power block. Regarding this last one, the particular thermodynamic cycle layout and the working fluid employed, have a decisive influence in the plant performance. In turn, this selection depends on the solar technology employed. Currently, the steam Rankine cycle is the most widespread and commercially available option, usually coupled to a parabolic trough solar field. However, other configurations have been implemented in solar thermal plants worldwide. Most of them are based on other solar technologies also coupled to a steam Rankine cycle, although integrated solar combined cycles have a significant level of implementation. In the first place, power block configurations based on conventional thermodynamic cycles—Rankine, Brayton, and combined Brayton–Rankine—are described. The achievements and challenges of each proposal are highlighted, for example, the benefits involved in hybrid solar source/fossil fuel plants. In the second place, proposals of advanced power block configurations are analyzed, standing out: supercritical CO2 Brayton cycles, advanced organic Rankine cycles, and innovative integrated solar combined cycles. Each of these proposals shows some advantages compared to the conventional layouts in certain power or source temperature ranges and hence they could be considered attractive options in the medium term. At last, a brief review of proposals of solar thermal integration with other renewable heat sources is also included.\",\"PeriodicalId\":48766,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews-Energy and Environment\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2021-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews-Energy and Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/wene.420\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Energy and Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/wene.420","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 5

摘要

用于发电的太阳能热发电厂至少包括两个主要系统:太阳能场和电力块。关于最后一个问题,特定的热力循环布局和使用的工作流体对工厂性能有决定性影响。反过来,这种选择取决于所采用的太阳能技术。目前,蒸汽朗肯循环是最广泛和商业上可用的选择,通常与抛物线槽太阳能场耦合。然而,其他配置已经在世界各地的太阳能热电厂中实施。其中大多数基于其他太阳能技术,也与蒸汽朗肯循环相结合,尽管集成太阳能联合循环的实施水平很高。首先,描述了基于传统热力学循环的功率块配置——兰金循环、布雷顿循环和布雷顿-兰金组合循环。每项提案的成就和挑战都得到了强调,例如,混合太阳能/化石燃料发电厂所带来的好处。其次,分析了先进的功率块配置方案,突出了:超临界CO2布雷顿循环、先进的有机朗肯循环和创新的集成太阳能联合循环。在某些电源或电源温度范围内,与传统布局相比,这些方案中的每一个都显示出一些优势,因此在中期内都可以被视为有吸引力的选择。最后,还简要回顾了太阳能热集成与其他可再生热源的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermodynamic cycles for solar thermal power plants: A review
Solar thermal power plants for electricity production include, at least, two main systems: the solar field and the power block. Regarding this last one, the particular thermodynamic cycle layout and the working fluid employed, have a decisive influence in the plant performance. In turn, this selection depends on the solar technology employed. Currently, the steam Rankine cycle is the most widespread and commercially available option, usually coupled to a parabolic trough solar field. However, other configurations have been implemented in solar thermal plants worldwide. Most of them are based on other solar technologies also coupled to a steam Rankine cycle, although integrated solar combined cycles have a significant level of implementation. In the first place, power block configurations based on conventional thermodynamic cycles—Rankine, Brayton, and combined Brayton–Rankine—are described. The achievements and challenges of each proposal are highlighted, for example, the benefits involved in hybrid solar source/fossil fuel plants. In the second place, proposals of advanced power block configurations are analyzed, standing out: supercritical CO2 Brayton cycles, advanced organic Rankine cycles, and innovative integrated solar combined cycles. Each of these proposals shows some advantages compared to the conventional layouts in certain power or source temperature ranges and hence they could be considered attractive options in the medium term. At last, a brief review of proposals of solar thermal integration with other renewable heat sources is also included.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.70
自引率
3.30%
发文量
42
期刊介绍: Wiley Interdisciplinary Reviews: Energy and Environmentis a new type of review journal covering all aspects of energy technology, security and environmental impact. Energy is one of the most critical resources for the welfare and prosperity of society. It also causes adverse environmental and societal effects, notably climate change which is the severest global problem in the modern age. Finding satisfactory solutions to the challenges ahead will need a linking of energy technology innovations, security, energy poverty, and environmental and climate impacts. The broad scope of energy issues demands collaboration between different disciplines of science and technology, and strong interaction between engineering, physical and life scientists, economists, sociologists and policy-makers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信