通过节点不变量的完全交的Gromov-Witten理论

IF 0.8 2区 数学 Q2 MATHEMATICS
Hülya Argüz, Pierrick Bousseau, Rahul Pandharipande, Dimitri Zvonkine
{"title":"通过节点不变量的完全交的Gromov-Witten理论","authors":"Hülya Argüz,&nbsp;Pierrick Bousseau,&nbsp;Rahul Pandharipande,&nbsp;Dimitri Zvonkine","doi":"10.1112/topo.12284","DOIUrl":null,"url":null,"abstract":"<p>We provide an inductive algorithm computing Gromov–Witten invariants in all genera with arbitrary insertions of all smooth complete intersections in projective space. We also prove that all Gromov–Witten classes of all smooth complete intersections in projective space belong to the tautological ring of the moduli space of stable curves. The main idea is to show that invariants with insertions of primitive cohomology classes are controlled by their monodromy and by invariants defined without primitive insertions but with imposed nodes in the domain curve. To compute these nodal Gromov–Witten invariants, we introduce the new notion of nodal relative Gromov–Witten invariants. We then prove a nodal degeneration formula and a relative splitting formula. These results for nodal relative Gromov–Witten theory are stated in complete generality and are of independent interest.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"16 1","pages":"264-343"},"PeriodicalIF":0.8000,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12284","citationCount":"5","resultStr":"{\"title\":\"Gromov–Witten theory of complete intersections via nodal invariants\",\"authors\":\"Hülya Argüz,&nbsp;Pierrick Bousseau,&nbsp;Rahul Pandharipande,&nbsp;Dimitri Zvonkine\",\"doi\":\"10.1112/topo.12284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We provide an inductive algorithm computing Gromov–Witten invariants in all genera with arbitrary insertions of all smooth complete intersections in projective space. We also prove that all Gromov–Witten classes of all smooth complete intersections in projective space belong to the tautological ring of the moduli space of stable curves. The main idea is to show that invariants with insertions of primitive cohomology classes are controlled by their monodromy and by invariants defined without primitive insertions but with imposed nodes in the domain curve. To compute these nodal Gromov–Witten invariants, we introduce the new notion of nodal relative Gromov–Witten invariants. We then prove a nodal degeneration formula and a relative splitting formula. These results for nodal relative Gromov–Witten theory are stated in complete generality and are of independent interest.</p>\",\"PeriodicalId\":56114,\"journal\":{\"name\":\"Journal of Topology\",\"volume\":\"16 1\",\"pages\":\"264-343\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12284\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Topology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/topo.12284\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12284","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

给出了一种计算投影空间中所有光滑完全交的任意插入的所有属的Gromov-Witten不变量的归纳算法。证明了投影空间中所有光滑完全交的Gromov-Witten类都属于稳定曲线模空间的重言环。本文的主要思想是证明带有插入基元上同类的不变量由基元上同类的单一性和没有插入基元但在域曲线上有强加节点的不变量控制。为了计算这些节点Gromov-Witten不变量,我们引入了节点相对Gromov-Witten不变量的新概念。然后证明了一个节退化公式和一个相对分裂公式。节点相对Gromov-Witten理论的这些结果是完全一般性的,具有独立的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Gromov–Witten theory of complete intersections via nodal invariants

Gromov–Witten theory of complete intersections via nodal invariants

We provide an inductive algorithm computing Gromov–Witten invariants in all genera with arbitrary insertions of all smooth complete intersections in projective space. We also prove that all Gromov–Witten classes of all smooth complete intersections in projective space belong to the tautological ring of the moduli space of stable curves. The main idea is to show that invariants with insertions of primitive cohomology classes are controlled by their monodromy and by invariants defined without primitive insertions but with imposed nodes in the domain curve. To compute these nodal Gromov–Witten invariants, we introduce the new notion of nodal relative Gromov–Witten invariants. We then prove a nodal degeneration formula and a relative splitting formula. These results for nodal relative Gromov–Witten theory are stated in complete generality and are of independent interest.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Topology
Journal of Topology 数学-数学
CiteScore
2.00
自引率
9.10%
发文量
62
审稿时长
>12 weeks
期刊介绍: The Journal of Topology publishes papers of high quality and significance in topology, geometry and adjacent areas of mathematics. Interesting, important and often unexpected links connect topology and geometry with many other parts of mathematics, and the editors welcome submissions on exciting new advances concerning such links, as well as those in the core subject areas of the journal. The Journal of Topology was founded in 2008. It is published quarterly with articles published individually online prior to appearing in a printed issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信