F. Chejne, W. Flórez, J. Maya, Javier Ordoñez-Loza, M. García-Pérez
{"title":"基于双曲传热的生物质热解过程物理数学建模与仿真","authors":"F. Chejne, W. Flórez, J. Maya, Javier Ordoñez-Loza, M. García-Pérez","doi":"10.1515/jnet-2022-0028","DOIUrl":null,"url":null,"abstract":"Abstract This paper explores the hyperbolic heat transfer effects in processes involving high heating rates. The behavior of the model is analyzed in detail under different boundary conditions and the circumstances under which a non-Fourier law could be used to describe thermal conduction processes established from physical mathematical analysis. Finally, the model developed here is coupled to a previous population balance framework to predict the bubbling phenomenon that occurs during the fast pyrolysis of biomass. We found that a transient overheating occurs in the central zone of the generated liquid phase due to the high heating rates that take place during that process.","PeriodicalId":16428,"journal":{"name":"Journal of Non-Equilibrium Thermodynamics","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physical Mathematical Modeling and Simulation Based on Hyperbolic Heat Transfer for High Heating Rate Processes in Biomass Pyrolysis\",\"authors\":\"F. Chejne, W. Flórez, J. Maya, Javier Ordoñez-Loza, M. García-Pérez\",\"doi\":\"10.1515/jnet-2022-0028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper explores the hyperbolic heat transfer effects in processes involving high heating rates. The behavior of the model is analyzed in detail under different boundary conditions and the circumstances under which a non-Fourier law could be used to describe thermal conduction processes established from physical mathematical analysis. Finally, the model developed here is coupled to a previous population balance framework to predict the bubbling phenomenon that occurs during the fast pyrolysis of biomass. We found that a transient overheating occurs in the central zone of the generated liquid phase due to the high heating rates that take place during that process.\",\"PeriodicalId\":16428,\"journal\":{\"name\":\"Journal of Non-Equilibrium Thermodynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2022-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Non-Equilibrium Thermodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/jnet-2022-0028\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Equilibrium Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/jnet-2022-0028","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Physical Mathematical Modeling and Simulation Based on Hyperbolic Heat Transfer for High Heating Rate Processes in Biomass Pyrolysis
Abstract This paper explores the hyperbolic heat transfer effects in processes involving high heating rates. The behavior of the model is analyzed in detail under different boundary conditions and the circumstances under which a non-Fourier law could be used to describe thermal conduction processes established from physical mathematical analysis. Finally, the model developed here is coupled to a previous population balance framework to predict the bubbling phenomenon that occurs during the fast pyrolysis of biomass. We found that a transient overheating occurs in the central zone of the generated liquid phase due to the high heating rates that take place during that process.
期刊介绍:
The Journal of Non-Equilibrium Thermodynamics serves as an international publication organ for new ideas, insights and results on non-equilibrium phenomena in science, engineering and related natural systems. The central aim of the journal is to provide a bridge between science and engineering and to promote scientific exchange on a) newly observed non-equilibrium phenomena, b) analytic or numeric modeling for their interpretation, c) vanguard methods to describe non-equilibrium phenomena.
Contributions should – among others – present novel approaches to analyzing, modeling and optimizing processes of engineering relevance such as transport processes of mass, momentum and energy, separation of fluid phases, reproduction of living cells, or energy conversion. The journal is particularly interested in contributions which add to the basic understanding of non-equilibrium phenomena in science and engineering, with systems of interest ranging from the macro- to the nano-level.
The Journal of Non-Equilibrium Thermodynamics has recently expanded its scope to place new emphasis on theoretical and experimental investigations of non-equilibrium phenomena in thermophysical, chemical, biochemical and abstract model systems of engineering relevance. We are therefore pleased to invite submissions which present newly observed non-equilibrium phenomena, analytic or fuzzy models for their interpretation, or new methods for their description.