{"title":"椰壳生物炭去除水溶液中的Cu(II)","authors":"R. Wahi, N. Hasana, Y. Yusof","doi":"10.21743/pjaec/2020.12.30","DOIUrl":null,"url":null,"abstract":"The ability of coconut shell biochar (CSB) and acid-base modified coconut shell biochar (MCSB) for the removal of copper (Cu(II)) from aqueous solution is examined. The basic characteristics of CSB as well as MCSB such as proximate analysis, pH value, surface area, surface morphology and surface functional groups are investigated. The individual effect of initial concentration and contact time on the removal efficiency of Cu(II) by CSB and MCSB was determined using one variable at a time (OVAT) approach. In addition, the response surface methodology (RSM) approach is applied to determine the combined effects of variables (pH, contact time and particle size) on the removal efficiency of Cu(II) ion. The RSM results for the MCSB showed that Cu(II) maximum removal efficiency is 99.50% at pH 7, contact time of 60 min, and particle size of 0.60 mm, respectively. It can be concluded that MCSB has greater potential than CSB to be utilized as an adsorbent for Cu(II) removal in water bodies.","PeriodicalId":19846,"journal":{"name":"Pakistan Journal of Analytical & Environmental Chemistry","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2020-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Coconut Shell Biochar for Removal of Cu(II) from Aqueous Solution\",\"authors\":\"R. Wahi, N. Hasana, Y. Yusof\",\"doi\":\"10.21743/pjaec/2020.12.30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ability of coconut shell biochar (CSB) and acid-base modified coconut shell biochar (MCSB) for the removal of copper (Cu(II)) from aqueous solution is examined. The basic characteristics of CSB as well as MCSB such as proximate analysis, pH value, surface area, surface morphology and surface functional groups are investigated. The individual effect of initial concentration and contact time on the removal efficiency of Cu(II) by CSB and MCSB was determined using one variable at a time (OVAT) approach. In addition, the response surface methodology (RSM) approach is applied to determine the combined effects of variables (pH, contact time and particle size) on the removal efficiency of Cu(II) ion. The RSM results for the MCSB showed that Cu(II) maximum removal efficiency is 99.50% at pH 7, contact time of 60 min, and particle size of 0.60 mm, respectively. It can be concluded that MCSB has greater potential than CSB to be utilized as an adsorbent for Cu(II) removal in water bodies.\",\"PeriodicalId\":19846,\"journal\":{\"name\":\"Pakistan Journal of Analytical & Environmental Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pakistan Journal of Analytical & Environmental Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21743/pjaec/2020.12.30\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pakistan Journal of Analytical & Environmental Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21743/pjaec/2020.12.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Coconut Shell Biochar for Removal of Cu(II) from Aqueous Solution
The ability of coconut shell biochar (CSB) and acid-base modified coconut shell biochar (MCSB) for the removal of copper (Cu(II)) from aqueous solution is examined. The basic characteristics of CSB as well as MCSB such as proximate analysis, pH value, surface area, surface morphology and surface functional groups are investigated. The individual effect of initial concentration and contact time on the removal efficiency of Cu(II) by CSB and MCSB was determined using one variable at a time (OVAT) approach. In addition, the response surface methodology (RSM) approach is applied to determine the combined effects of variables (pH, contact time and particle size) on the removal efficiency of Cu(II) ion. The RSM results for the MCSB showed that Cu(II) maximum removal efficiency is 99.50% at pH 7, contact time of 60 min, and particle size of 0.60 mm, respectively. It can be concluded that MCSB has greater potential than CSB to be utilized as an adsorbent for Cu(II) removal in water bodies.