对流涡度矢量的动态预报方法

IF 2.4 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES
Guanbo Zhou , Xin Zhang , Longsheng Liu
{"title":"对流涡度矢量的动态预报方法","authors":"Guanbo Zhou ,&nbsp;Xin Zhang ,&nbsp;Longsheng Liu","doi":"10.1016/j.tcrr.2021.11.002","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we introduce the convective vorticity vector and its application in the forecast and diagnosis of rainstorm. Convective vorticity vector is a parameter of vector field, different from scalar field, it contains more important information of physical quantities, so it could not be replaced. Considering the irresistible importance of vector field we will introduce the theory of vector field and its dynamic forecast method. With the convective vorticity vector and its vertical component's tendency equation, diagnostic analysis on the heavy-rainfall event caused by landfall typhoon “Morakot” in the year 2009 is conducted. The result shows that, the abnormal values of convective vorticity vector always changes with the development of the observed precipitation region, and their horizontal distribution is quite similar. Analysis reveals a certain correspondence between the convective vorticity vector and the observed 6-h accumulated surface rainfall, they are significantly related. The convective vorticity vector is capable of describing the typical vertical structure of dynamical and thermodynamic fields of precipitation system, so it is closely related to the occurrence and development of precipitation system and could have certain relation with the surface rainfall regions.</p></div>","PeriodicalId":44442,"journal":{"name":"Tropical Cyclone Research and Review","volume":"10 4","pages":"Pages 209-214"},"PeriodicalIF":2.4000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2225603221000369/pdfft?md5=92facf2d07844303c4aaa37e08084eeb&pid=1-s2.0-S2225603221000369-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The dynamic forecast method of convective vorticity vector\",\"authors\":\"Guanbo Zhou ,&nbsp;Xin Zhang ,&nbsp;Longsheng Liu\",\"doi\":\"10.1016/j.tcrr.2021.11.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we introduce the convective vorticity vector and its application in the forecast and diagnosis of rainstorm. Convective vorticity vector is a parameter of vector field, different from scalar field, it contains more important information of physical quantities, so it could not be replaced. Considering the irresistible importance of vector field we will introduce the theory of vector field and its dynamic forecast method. With the convective vorticity vector and its vertical component's tendency equation, diagnostic analysis on the heavy-rainfall event caused by landfall typhoon “Morakot” in the year 2009 is conducted. The result shows that, the abnormal values of convective vorticity vector always changes with the development of the observed precipitation region, and their horizontal distribution is quite similar. Analysis reveals a certain correspondence between the convective vorticity vector and the observed 6-h accumulated surface rainfall, they are significantly related. The convective vorticity vector is capable of describing the typical vertical structure of dynamical and thermodynamic fields of precipitation system, so it is closely related to the occurrence and development of precipitation system and could have certain relation with the surface rainfall regions.</p></div>\",\"PeriodicalId\":44442,\"journal\":{\"name\":\"Tropical Cyclone Research and Review\",\"volume\":\"10 4\",\"pages\":\"Pages 209-214\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2225603221000369/pdfft?md5=92facf2d07844303c4aaa37e08084eeb&pid=1-s2.0-S2225603221000369-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tropical Cyclone Research and Review\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2225603221000369\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tropical Cyclone Research and Review","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2225603221000369","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了对流涡度矢量及其在暴雨预报和诊断中的应用。对流涡量矢量是矢量场的一个参数,与标量场不同,它包含了更重要的物理量信息,因此是不可替代的。考虑到向量场不可抗拒的重要性,我们将介绍向量场理论及其动态预测方法。利用对流涡度矢量及其垂直分量的趋势方程,对2009年登陆台风“莫拉克”造成的强降雨事件进行了诊断分析。结果表明,对流涡度矢量的异常值随观测降水区域的发展而变化,且其水平分布非常相似。分析表明,对流涡度矢量与观测到的6 h地面累计降雨量有一定的对应关系,两者之间存在显著的相关性。对流涡度矢量能够描述降水系统动力场和热力场的典型垂直结构,因此与降水系统的发生和发展密切相关,并与地面降雨区域有一定关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The dynamic forecast method of convective vorticity vector

In this paper we introduce the convective vorticity vector and its application in the forecast and diagnosis of rainstorm. Convective vorticity vector is a parameter of vector field, different from scalar field, it contains more important information of physical quantities, so it could not be replaced. Considering the irresistible importance of vector field we will introduce the theory of vector field and its dynamic forecast method. With the convective vorticity vector and its vertical component's tendency equation, diagnostic analysis on the heavy-rainfall event caused by landfall typhoon “Morakot” in the year 2009 is conducted. The result shows that, the abnormal values of convective vorticity vector always changes with the development of the observed precipitation region, and their horizontal distribution is quite similar. Analysis reveals a certain correspondence between the convective vorticity vector and the observed 6-h accumulated surface rainfall, they are significantly related. The convective vorticity vector is capable of describing the typical vertical structure of dynamical and thermodynamic fields of precipitation system, so it is closely related to the occurrence and development of precipitation system and could have certain relation with the surface rainfall regions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tropical Cyclone Research and Review
Tropical Cyclone Research and Review METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.60
自引率
3.40%
发文量
184
审稿时长
30 weeks
期刊介绍: Tropical Cyclone Research and Review is an international journal focusing on tropical cyclone monitoring, forecasting, and research as well as associated hydrological effects and disaster risk reduction. This journal is edited and published by the ESCAP/WMO Typhoon Committee (TC) and the Shanghai Typhoon Institute of the China Meteorology Administration (STI/CMA). Contributions from all tropical cyclone basins are welcome. Scope of the journal includes: • Reviews of tropical cyclones exhibiting unusual characteristics or behavior or resulting in disastrous impacts on Typhoon Committee Members and other regional WMO bodies • Advances in applied and basic tropical cyclone research or technology to improve tropical cyclone forecasts and warnings • Basic theoretical studies of tropical cyclones • Event reports, compelling images, and topic review reports of tropical cyclones • Impacts, risk assessments, and risk management techniques related to tropical cyclones
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信