锂离子电池富锂正极材料的氧氧化还原化学:从原子结构到纳米工程的理解

IF 9.9 2区 材料科学 Q1 Engineering
Majid Farahmandjou , Shuoqing Zhao , Wei-Hong Lai , Bing Sun , Peter.H.L. Notten , Guoxiu Wang
{"title":"锂离子电池富锂正极材料的氧氧化还原化学:从原子结构到纳米工程的理解","authors":"Majid Farahmandjou ,&nbsp;Shuoqing Zhao ,&nbsp;Wei-Hong Lai ,&nbsp;Bing Sun ,&nbsp;Peter.H.L. Notten ,&nbsp;Guoxiu Wang","doi":"10.1016/j.nanoms.2022.03.004","DOIUrl":null,"url":null,"abstract":"<div><p>Lithium-rich oxide compounds have been recognized as promising cathode materials for high performance Li-ion batteries, owing to their high specific capacity. However, it remains a great challenge to achieve the fully reversible anionic redox reactions to realize high capacity, high stability, and low voltage hysteresis for lithium-rich cathode materials. Therefore, it is critically important to comprehensively understand and control the anionic redox chemistry of lithium-rich cathode materials, including atomic structure design, and nano-scale materials engineering technologies. Herein, we summarize the recent research progress of lithium-rich cathode materials with a focus on redox chemistry. Particularly, we highlight the oxygen-based redox reactions in lithium-rich metal oxides, with critical views of designing next generation oxygen redox lithium cathode materials. Furthermore, we purposed the most promising strategies for improving the performances of lithium-rich cathode materials with a technology-spectrum from the atomic scale to nano-scale.</p></div>","PeriodicalId":33573,"journal":{"name":"Nano Materials Science","volume":"4 4","pages":"Pages 322-338"},"PeriodicalIF":9.9000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589965122000198/pdfft?md5=2959fb0841833edc7e7a04776ec291d5&pid=1-s2.0-S2589965122000198-main.pdf","citationCount":"16","resultStr":"{\"title\":\"Oxygen redox chemistry in lithium-rich cathode materials for Li-ion batteries: Understanding from atomic structure to nano-engineering\",\"authors\":\"Majid Farahmandjou ,&nbsp;Shuoqing Zhao ,&nbsp;Wei-Hong Lai ,&nbsp;Bing Sun ,&nbsp;Peter.H.L. Notten ,&nbsp;Guoxiu Wang\",\"doi\":\"10.1016/j.nanoms.2022.03.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Lithium-rich oxide compounds have been recognized as promising cathode materials for high performance Li-ion batteries, owing to their high specific capacity. However, it remains a great challenge to achieve the fully reversible anionic redox reactions to realize high capacity, high stability, and low voltage hysteresis for lithium-rich cathode materials. Therefore, it is critically important to comprehensively understand and control the anionic redox chemistry of lithium-rich cathode materials, including atomic structure design, and nano-scale materials engineering technologies. Herein, we summarize the recent research progress of lithium-rich cathode materials with a focus on redox chemistry. Particularly, we highlight the oxygen-based redox reactions in lithium-rich metal oxides, with critical views of designing next generation oxygen redox lithium cathode materials. Furthermore, we purposed the most promising strategies for improving the performances of lithium-rich cathode materials with a technology-spectrum from the atomic scale to nano-scale.</p></div>\",\"PeriodicalId\":33573,\"journal\":{\"name\":\"Nano Materials Science\",\"volume\":\"4 4\",\"pages\":\"Pages 322-338\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2589965122000198/pdfft?md5=2959fb0841833edc7e7a04776ec291d5&pid=1-s2.0-S2589965122000198-main.pdf\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Materials Science\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589965122000198\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Materials Science","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589965122000198","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 16

摘要

富锂氧化物因其高比容量而被认为是高性能锂离子电池极具前景的正极材料。然而,如何实现完全可逆的阴离子氧化还原反应,以实现高容量、高稳定性和低电压滞后的富锂正极材料,仍然是一个巨大的挑战。因此,全面了解和控制富锂正极材料的阴离子氧化还原化学,包括原子结构设计、纳米级材料工程技术等都具有至关重要的意义。本文以氧化还原化学为重点,综述了富锂正极材料的研究进展。我们特别强调了富锂金属氧化物中的氧基氧化还原反应,并对设计下一代氧氧化还原锂正极材料提出了批评意见。此外,我们利用从原子尺度到纳米尺度的技术谱,提出了最有希望提高富锂阴极材料性能的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Oxygen redox chemistry in lithium-rich cathode materials for Li-ion batteries: Understanding from atomic structure to nano-engineering

Lithium-rich oxide compounds have been recognized as promising cathode materials for high performance Li-ion batteries, owing to their high specific capacity. However, it remains a great challenge to achieve the fully reversible anionic redox reactions to realize high capacity, high stability, and low voltage hysteresis for lithium-rich cathode materials. Therefore, it is critically important to comprehensively understand and control the anionic redox chemistry of lithium-rich cathode materials, including atomic structure design, and nano-scale materials engineering technologies. Herein, we summarize the recent research progress of lithium-rich cathode materials with a focus on redox chemistry. Particularly, we highlight the oxygen-based redox reactions in lithium-rich metal oxides, with critical views of designing next generation oxygen redox lithium cathode materials. Furthermore, we purposed the most promising strategies for improving the performances of lithium-rich cathode materials with a technology-spectrum from the atomic scale to nano-scale.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Materials Science
Nano Materials Science Engineering-Mechanics of Materials
CiteScore
20.90
自引率
3.00%
发文量
294
审稿时长
9 weeks
期刊介绍: Nano Materials Science (NMS) is an international and interdisciplinary, open access, scholarly journal. NMS publishes peer-reviewed original articles and reviews on nanoscale material science and nanometer devices, with topics encompassing preparation and processing; high-throughput characterization; material performance evaluation and application of material characteristics such as the microstructure and properties of one-dimensional, two-dimensional, and three-dimensional nanostructured and nanofunctional materials; design, preparation, and processing techniques; and performance evaluation technology and nanometer device applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信