可能有很多算术句子Gödel

IF 0.8 1区 哲学 Q2 HISTORY & PHILOSOPHY OF SCIENCE
Kaave Lajevardi;Saeed Salehi
{"title":"可能有很多算术句子Gödel","authors":"Kaave Lajevardi;Saeed Salehi","doi":"10.1093/philmat/nkaa041","DOIUrl":null,"url":null,"abstract":"We argue that, under the usual assumptions for sufficiently strong arithmetical theories that are subject to Gödel's First Incompleteness Theorem, one cannot, without impropriety, talk about the Gödel sentence of the theory. The reason is that, without violating the requirements of Gödel's theorem, there could be a true sentence and a false one each of which is provably equivalent to its own unprovability in the theory if the theory is unsound.","PeriodicalId":49004,"journal":{"name":"Philosophia Mathematica","volume":"29 1","pages":"278-287"},"PeriodicalIF":0.8000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/philmat/nkaa041","citationCount":"1","resultStr":"{\"title\":\"There May Be Many Arithmetical Gödel Sentences\",\"authors\":\"Kaave Lajevardi;Saeed Salehi\",\"doi\":\"10.1093/philmat/nkaa041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We argue that, under the usual assumptions for sufficiently strong arithmetical theories that are subject to Gödel's First Incompleteness Theorem, one cannot, without impropriety, talk about the Gödel sentence of the theory. The reason is that, without violating the requirements of Gödel's theorem, there could be a true sentence and a false one each of which is provably equivalent to its own unprovability in the theory if the theory is unsound.\",\"PeriodicalId\":49004,\"journal\":{\"name\":\"Philosophia Mathematica\",\"volume\":\"29 1\",\"pages\":\"278-287\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/philmat/nkaa041\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophia Mathematica\",\"FirstCategoryId\":\"98\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9520877/\",\"RegionNum\":1,\"RegionCategory\":\"哲学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HISTORY & PHILOSOPHY OF SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophia Mathematica","FirstCategoryId":"98","ListUrlMain":"https://ieeexplore.ieee.org/document/9520877/","RegionNum":1,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HISTORY & PHILOSOPHY OF SCIENCE","Score":null,"Total":0}
引用次数: 1

摘要

我们认为,在通常的假设下,对于服从Gödel第一不完备定理的足够强的算术理论,人们不可能不得体地谈论该理论的Gödel句。原因是,在不违反Gödel定理要求的情况下,如果理论是不可靠的,那么可以有一个真句和一个假句,每一个都可证明地等同于它自己在理论中的不可证明性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
There May Be Many Arithmetical Gödel Sentences
We argue that, under the usual assumptions for sufficiently strong arithmetical theories that are subject to Gödel's First Incompleteness Theorem, one cannot, without impropriety, talk about the Gödel sentence of the theory. The reason is that, without violating the requirements of Gödel's theorem, there could be a true sentence and a false one each of which is provably equivalent to its own unprovability in the theory if the theory is unsound.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Philosophia Mathematica
Philosophia Mathematica HISTORY & PHILOSOPHY OF SCIENCE-
CiteScore
1.70
自引率
9.10%
发文量
26
审稿时长
>12 weeks
期刊介绍: Philosophia Mathematica is the only journal in the world devoted specifically to philosophy of mathematics. The journal publishes peer-reviewed new work in philosophy of mathematics, the application of mathematics, and computing. In addition to main articles, sometimes grouped on a single theme, there are shorter discussion notes, letters, and book reviews. The journal is published online-only, with three issues published per year.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信