利用TOPSIS提高奶粉生产单元维修任务质量

IF 1.8 Q3 ENGINEERING, INDUSTRIAL
Nilesh Pancholi, Hiren Gajera, Darshit R. Shah
{"title":"利用TOPSIS提高奶粉生产单元维修任务质量","authors":"Nilesh Pancholi, Hiren Gajera, Darshit R. Shah","doi":"10.1108/jqme-04-2021-0028","DOIUrl":null,"url":null,"abstract":"PurposeThe purpose of this paper is to explore the possibilities of improving the quality of existing maintenance task of the atomizer of milk powder manufacturing unit of a dairy plant. Looking to the past business volume and expected growth, the milk powder manufacturing unit forms a noticeable sector of processing plant. The lack of quality in maintenance standards leads to reliability losses of about 20–25% with low productivity and profit. Such facts and challenges of keeping the system in ready-state motivate a definite maintenance plan to be modeled based on a live failure analysis to be executed during shutdown or scheduled period.Design/methodology/approachThe deliverables are achieved by collecting the historical failure data i.e. downtime and failure frequencies; from January 2020 to July 2020 at Dudhsagar dairy, Gujarat, India. Reliability modeling is done in a view to understand the failure pattern behavior of the milk powder manufacturing unit. The atomizer is discriminated as a critical component based on these data and their functional failures, failure causes, effects and repercussions of failures with existing control and maintenance practices has been modeled based on live shop-floor study. Scores are assigned on 1 to 10 levels by analyzing attributes effects from lowest to highest concern respectively for every modes of failure through realistic brain-storming among maintenance team by incorporating some advanced attributes like maintainability, economic safety, economic cost and spares with basic criteria in this study. The maintainability criticality index (MCI) is narrated by these score values through multi-attribute decision-making (MADM) based failure analysis models like Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS).FindingsThe primary findings of this research work are to propose improvements in the quality of the maintenance plan of critical component like; atomizer of a milk powder manufacturing unit which is commonly representing critical component in a major range of industrial processes. The case study recommended four silent maintenance strategies i.e. scheduled maintenance scheduled discard, scheduled failure finding and redesign as a qualified maintenance plan for the atomizer based on MCI and rankings of its potential failure causes. The results are helpful in upgrading quality standards for the maintenance activities of a process industry of alike or of dissimilar kinds in accordance with the failure analysis.Originality/valueOriginality mainly consists of investigating the scope of enhancing the existing maintenance practices through actual failure analysis with the help of TOPSIS. The criteria employed in this study are probability of chances of failure, degree of detectability and degree of severity as basic criteria along with some advanced criteria like; maintainability, spare parts, economic cost, economic safety are selected based on the outcome of shop-floor study and reliability modeling. The notable past failure statistics (downtime, frequency of failures) of a milk powder manufacturing unit were recorded and these data are analyzed based on reliability to extract an explicative component i.e. atomizer.","PeriodicalId":16938,"journal":{"name":"Journal of Quality in Maintenance Engineering","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improving quality of maintenance task for milk powder manufacturing unit through TOPSIS\",\"authors\":\"Nilesh Pancholi, Hiren Gajera, Darshit R. Shah\",\"doi\":\"10.1108/jqme-04-2021-0028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeThe purpose of this paper is to explore the possibilities of improving the quality of existing maintenance task of the atomizer of milk powder manufacturing unit of a dairy plant. Looking to the past business volume and expected growth, the milk powder manufacturing unit forms a noticeable sector of processing plant. The lack of quality in maintenance standards leads to reliability losses of about 20–25% with low productivity and profit. Such facts and challenges of keeping the system in ready-state motivate a definite maintenance plan to be modeled based on a live failure analysis to be executed during shutdown or scheduled period.Design/methodology/approachThe deliverables are achieved by collecting the historical failure data i.e. downtime and failure frequencies; from January 2020 to July 2020 at Dudhsagar dairy, Gujarat, India. Reliability modeling is done in a view to understand the failure pattern behavior of the milk powder manufacturing unit. The atomizer is discriminated as a critical component based on these data and their functional failures, failure causes, effects and repercussions of failures with existing control and maintenance practices has been modeled based on live shop-floor study. Scores are assigned on 1 to 10 levels by analyzing attributes effects from lowest to highest concern respectively for every modes of failure through realistic brain-storming among maintenance team by incorporating some advanced attributes like maintainability, economic safety, economic cost and spares with basic criteria in this study. The maintainability criticality index (MCI) is narrated by these score values through multi-attribute decision-making (MADM) based failure analysis models like Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS).FindingsThe primary findings of this research work are to propose improvements in the quality of the maintenance plan of critical component like; atomizer of a milk powder manufacturing unit which is commonly representing critical component in a major range of industrial processes. The case study recommended four silent maintenance strategies i.e. scheduled maintenance scheduled discard, scheduled failure finding and redesign as a qualified maintenance plan for the atomizer based on MCI and rankings of its potential failure causes. The results are helpful in upgrading quality standards for the maintenance activities of a process industry of alike or of dissimilar kinds in accordance with the failure analysis.Originality/valueOriginality mainly consists of investigating the scope of enhancing the existing maintenance practices through actual failure analysis with the help of TOPSIS. The criteria employed in this study are probability of chances of failure, degree of detectability and degree of severity as basic criteria along with some advanced criteria like; maintainability, spare parts, economic cost, economic safety are selected based on the outcome of shop-floor study and reliability modeling. The notable past failure statistics (downtime, frequency of failures) of a milk powder manufacturing unit were recorded and these data are analyzed based on reliability to extract an explicative component i.e. atomizer.\",\"PeriodicalId\":16938,\"journal\":{\"name\":\"Journal of Quality in Maintenance Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Quality in Maintenance Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/jqme-04-2021-0028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quality in Maintenance Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/jqme-04-2021-0028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 1

摘要

目的探讨提高某乳品厂奶粉生产装置雾化器现有维修任务质量的可能性。从过去的业务量和预期增长来看,奶粉生产单位是加工厂中一个引人注目的部门。维修标准缺乏质量导致可靠性损失约20-25%,生产率和利润低。这些保持系统处于就绪状态的事实和挑战,促使我们根据停机或计划期间执行的实时故障分析,制定明确的维护计划。设计/方法/途径通过收集历史故障数据(即停机时间和故障频率)来实现可交付成果;2020年1月至2020年7月,在印度古吉拉特邦的Dudhsagar奶牛场。建立了可靠性模型,以了解奶粉生产单元的失效模式行为。基于这些数据,雾化器被区分为一个关键部件,它们的功能故障、故障原因、影响和故障的影响都是基于现场车间研究的现有控制和维护实践建模的。通过实际的维护团队头脑风暴,将可维护性、经济安全性、经济成本、备件等高级属性与本研究的基本标准结合,从关注度最低到关注度最高,对每种故障模式分别进行属性效应分析,并给出1 - 10个等级的评分。通过基于多属性决策(MADM)的故障分析模型,如TOPSIS (technical for Order of Preference by Similarity to Ideal Solution),将可维护性临界指数(MCI)表示为这些评分值。本研究工作的主要发现是提出了关键部件维修计划质量的改进方案,如;奶粉生产单位的雾化器,通常代表主要工业过程中的关键部件。案例研究推荐了四种无声维护策略,即定期维护,定期丢弃,定期故障发现和重新设计,作为基于MCI及其潜在故障原因排名的合格维护计划。研究结果有助于根据故障分析提高过程工业类似或不同类型维修活动的质量标准。原创性/价值原创性主要包括在TOPSIS的帮助下,通过实际故障分析,调查现有维修实践的改进范围。本研究采用的标准是失败的机会概率、可检测程度和严重程度作为基本标准,以及一些高级标准,如;根据车间研究结果和可靠性建模,选择可维护性、备件、经济成本、经济安全性。记录了奶粉生产单位过去的显著故障统计数据(停机时间,故障频率),并根据可靠性对这些数据进行分析,以提取一个说明性组件,即雾化器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving quality of maintenance task for milk powder manufacturing unit through TOPSIS
PurposeThe purpose of this paper is to explore the possibilities of improving the quality of existing maintenance task of the atomizer of milk powder manufacturing unit of a dairy plant. Looking to the past business volume and expected growth, the milk powder manufacturing unit forms a noticeable sector of processing plant. The lack of quality in maintenance standards leads to reliability losses of about 20–25% with low productivity and profit. Such facts and challenges of keeping the system in ready-state motivate a definite maintenance plan to be modeled based on a live failure analysis to be executed during shutdown or scheduled period.Design/methodology/approachThe deliverables are achieved by collecting the historical failure data i.e. downtime and failure frequencies; from January 2020 to July 2020 at Dudhsagar dairy, Gujarat, India. Reliability modeling is done in a view to understand the failure pattern behavior of the milk powder manufacturing unit. The atomizer is discriminated as a critical component based on these data and their functional failures, failure causes, effects and repercussions of failures with existing control and maintenance practices has been modeled based on live shop-floor study. Scores are assigned on 1 to 10 levels by analyzing attributes effects from lowest to highest concern respectively for every modes of failure through realistic brain-storming among maintenance team by incorporating some advanced attributes like maintainability, economic safety, economic cost and spares with basic criteria in this study. The maintainability criticality index (MCI) is narrated by these score values through multi-attribute decision-making (MADM) based failure analysis models like Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS).FindingsThe primary findings of this research work are to propose improvements in the quality of the maintenance plan of critical component like; atomizer of a milk powder manufacturing unit which is commonly representing critical component in a major range of industrial processes. The case study recommended four silent maintenance strategies i.e. scheduled maintenance scheduled discard, scheduled failure finding and redesign as a qualified maintenance plan for the atomizer based on MCI and rankings of its potential failure causes. The results are helpful in upgrading quality standards for the maintenance activities of a process industry of alike or of dissimilar kinds in accordance with the failure analysis.Originality/valueOriginality mainly consists of investigating the scope of enhancing the existing maintenance practices through actual failure analysis with the help of TOPSIS. The criteria employed in this study are probability of chances of failure, degree of detectability and degree of severity as basic criteria along with some advanced criteria like; maintainability, spare parts, economic cost, economic safety are selected based on the outcome of shop-floor study and reliability modeling. The notable past failure statistics (downtime, frequency of failures) of a milk powder manufacturing unit were recorded and these data are analyzed based on reliability to extract an explicative component i.e. atomizer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Quality in Maintenance Engineering
Journal of Quality in Maintenance Engineering Engineering-Safety, Risk, Reliability and Quality
CiteScore
4.00
自引率
13.30%
发文量
24
期刊介绍: This exciting journal looks at maintenance engineering from a positive standpoint, and clarifies its recently elevatedstatus as a highly technical, scientific, and complex field. Typical areas examined include: ■Budget and control ■Equipment management ■Maintenance information systems ■Process capability and maintenance ■Process monitoring techniques ■Reliability-based maintenance ■Replacement and life cycle costs ■TQM and maintenance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信