{"title":"基于语义分割网络的苹果叶病分割与分类研究","authors":"Bin Wang, Lili Li, Shilin Li, Hua Yang","doi":"10.35633/inmateh-69-27","DOIUrl":null,"url":null,"abstract":"The key to diagnosing the types and degree of apple leaf diseases is to correctly segment apple leaf disease spots. Therefore, in order to effectively solve the problem of poor segmentation of leaves and diseased areas, the U2Net semantic segmentation network model was used in the research of apple leaf disease identification and disease diagnosis, and compared with the classic semantic segmentation network model DeepLabV3+ and UNet. In addition, the effects of different learning rates (0.01, 0.001, 0.0001) and optimizers (Adam, SGD) on the performance of U2Net network model were compared and analyzed. The experimental results showed that the learning rate is 0.001 and the optimizer is Adam, the average pixel accuracy (MPA) and mean intersection over union (MIoU) of the research model for lesion segmentation reach 98.87% and 84.43%, respectively. The results of this study were expected to provide the theoretical basis for the precise control of apple leaf disease.","PeriodicalId":44197,"journal":{"name":"INMATEH-Agricultural Engineering","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RESEARCH ON APPLE LEAF DISEASE SEGMENTATION AND CLASSIFICATION BASED ON SEMANTIC SEGMENTATION NETWORK\",\"authors\":\"Bin Wang, Lili Li, Shilin Li, Hua Yang\",\"doi\":\"10.35633/inmateh-69-27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The key to diagnosing the types and degree of apple leaf diseases is to correctly segment apple leaf disease spots. Therefore, in order to effectively solve the problem of poor segmentation of leaves and diseased areas, the U2Net semantic segmentation network model was used in the research of apple leaf disease identification and disease diagnosis, and compared with the classic semantic segmentation network model DeepLabV3+ and UNet. In addition, the effects of different learning rates (0.01, 0.001, 0.0001) and optimizers (Adam, SGD) on the performance of U2Net network model were compared and analyzed. The experimental results showed that the learning rate is 0.001 and the optimizer is Adam, the average pixel accuracy (MPA) and mean intersection over union (MIoU) of the research model for lesion segmentation reach 98.87% and 84.43%, respectively. The results of this study were expected to provide the theoretical basis for the precise control of apple leaf disease.\",\"PeriodicalId\":44197,\"journal\":{\"name\":\"INMATEH-Agricultural Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INMATEH-Agricultural Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35633/inmateh-69-27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INMATEH-Agricultural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35633/inmateh-69-27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
RESEARCH ON APPLE LEAF DISEASE SEGMENTATION AND CLASSIFICATION BASED ON SEMANTIC SEGMENTATION NETWORK
The key to diagnosing the types and degree of apple leaf diseases is to correctly segment apple leaf disease spots. Therefore, in order to effectively solve the problem of poor segmentation of leaves and diseased areas, the U2Net semantic segmentation network model was used in the research of apple leaf disease identification and disease diagnosis, and compared with the classic semantic segmentation network model DeepLabV3+ and UNet. In addition, the effects of different learning rates (0.01, 0.001, 0.0001) and optimizers (Adam, SGD) on the performance of U2Net network model were compared and analyzed. The experimental results showed that the learning rate is 0.001 and the optimizer is Adam, the average pixel accuracy (MPA) and mean intersection over union (MIoU) of the research model for lesion segmentation reach 98.87% and 84.43%, respectively. The results of this study were expected to provide the theoretical basis for the precise control of apple leaf disease.