高压盐水吸收对增材聚合物力学特性的影响

Q1 Engineering
James LeBlanc , Lewis Shattuck , Eric Warner , Carlos Javier , Irine Chenwi , Tyler Chu , Arun Shukla
{"title":"高压盐水吸收对增材聚合物力学特性的影响","authors":"James LeBlanc ,&nbsp;Lewis Shattuck ,&nbsp;Eric Warner ,&nbsp;Carlos Javier ,&nbsp;Irine Chenwi ,&nbsp;Tyler Chu ,&nbsp;Arun Shukla","doi":"10.1016/j.ijlmm.2022.12.001","DOIUrl":null,"url":null,"abstract":"<div><p>An experimental study has been performed to investigate the coupled effects of hydrostatic deep depth pressure and sustained salt-water immersion on the mechanical properties and material structure of additively manufactured (AM) polymer based materials. The materials that were evaluated in the study were produced by both the material extrusion and vat photopolymerization printing methods. The material extrusion materials consisted of Stratasys ULTEM 9085 and Markforged Onyx and the vat photopolymerization material was Accura ClearVue resin. Water immersion was conducted with 3.5% NaCl solution at room temperature under a pressure of 34.5 MPa in a novel test facility for long duration, high pressure water saturation. The respective materials were characterized in three conditions: (1) baseline with no water saturation, (2) 30 day water immersion, and (3) 60 day water immersion. The change in mechanical properties as a function of aging time was quantified through controlled laboratory testing, namely tension, compression, flexure, and in-plane fracture toughness. Additionally, a microscopic evaluation was performed to evaluate the physical material degradation between layer bonding due to the saline water absorption. The significant findings of the study highlight that salt water immersion has differing effects on additively manufactured materials based on the material composition of the base material and thus significant consideration must be given to material selection in marine environments.</p></div>","PeriodicalId":52306,"journal":{"name":"International Journal of Lightweight Materials and Manufacture","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effect of high pressure salt water absorption on the mechanical characteristics of additively manufactured polymers\",\"authors\":\"James LeBlanc ,&nbsp;Lewis Shattuck ,&nbsp;Eric Warner ,&nbsp;Carlos Javier ,&nbsp;Irine Chenwi ,&nbsp;Tyler Chu ,&nbsp;Arun Shukla\",\"doi\":\"10.1016/j.ijlmm.2022.12.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An experimental study has been performed to investigate the coupled effects of hydrostatic deep depth pressure and sustained salt-water immersion on the mechanical properties and material structure of additively manufactured (AM) polymer based materials. The materials that were evaluated in the study were produced by both the material extrusion and vat photopolymerization printing methods. The material extrusion materials consisted of Stratasys ULTEM 9085 and Markforged Onyx and the vat photopolymerization material was Accura ClearVue resin. Water immersion was conducted with 3.5% NaCl solution at room temperature under a pressure of 34.5 MPa in a novel test facility for long duration, high pressure water saturation. The respective materials were characterized in three conditions: (1) baseline with no water saturation, (2) 30 day water immersion, and (3) 60 day water immersion. The change in mechanical properties as a function of aging time was quantified through controlled laboratory testing, namely tension, compression, flexure, and in-plane fracture toughness. Additionally, a microscopic evaluation was performed to evaluate the physical material degradation between layer bonding due to the saline water absorption. The significant findings of the study highlight that salt water immersion has differing effects on additively manufactured materials based on the material composition of the base material and thus significant consideration must be given to material selection in marine environments.</p></div>\",\"PeriodicalId\":52306,\"journal\":{\"name\":\"International Journal of Lightweight Materials and Manufacture\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Lightweight Materials and Manufacture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2588840422000841\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Lightweight Materials and Manufacture","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588840422000841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

摘要

进行了一项实验研究,以研究静水深层压力和持续盐水浸泡对添加制造(AM)聚合物基材料的机械性能和材料结构的耦合影响。研究中评估的材料是通过材料挤出和还原光聚合印刷方法生产的。材料挤出材料由Stratasys ULTEM 9085和Markforge Onyx组成,还原光聚合材料为Accura ClearVue树脂。在一种新型的测试设备中,在34.5MPa的压力下,用3.5%的NaCl溶液在室温下进行长时间高压水饱和的浸水。在三个条件下对各自的材料进行表征:(1)没有水饱和的基线,(2)30天的水浸泡,和(3)60天的水浸渍。通过受控的实验室测试,即拉伸、压缩、弯曲和平面内断裂韧性,量化了机械性能随老化时间的变化。此外,还进行了微观评估,以评估由于盐水吸收而导致的层间结合的物理材料降解。该研究的重要发现强调,盐水浸泡对添加制造的材料有不同的影响,这取决于基材的材料组成,因此必须充分考虑海洋环境中的材料选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of high pressure salt water absorption on the mechanical characteristics of additively manufactured polymers

An experimental study has been performed to investigate the coupled effects of hydrostatic deep depth pressure and sustained salt-water immersion on the mechanical properties and material structure of additively manufactured (AM) polymer based materials. The materials that were evaluated in the study were produced by both the material extrusion and vat photopolymerization printing methods. The material extrusion materials consisted of Stratasys ULTEM 9085 and Markforged Onyx and the vat photopolymerization material was Accura ClearVue resin. Water immersion was conducted with 3.5% NaCl solution at room temperature under a pressure of 34.5 MPa in a novel test facility for long duration, high pressure water saturation. The respective materials were characterized in three conditions: (1) baseline with no water saturation, (2) 30 day water immersion, and (3) 60 day water immersion. The change in mechanical properties as a function of aging time was quantified through controlled laboratory testing, namely tension, compression, flexure, and in-plane fracture toughness. Additionally, a microscopic evaluation was performed to evaluate the physical material degradation between layer bonding due to the saline water absorption. The significant findings of the study highlight that salt water immersion has differing effects on additively manufactured materials based on the material composition of the base material and thus significant consideration must be given to material selection in marine environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Lightweight Materials and Manufacture
International Journal of Lightweight Materials and Manufacture Engineering-Industrial and Manufacturing Engineering
CiteScore
9.90
自引率
0.00%
发文量
52
审稿时长
48 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信