统计数据的源元数据:结构化数据转换语言(SDTL)简介

IASSIST quarterly Pub Date : 2020-07-06 DOI:10.29173/iq983
George Alter, Darrell Donakowski, J. Gager, P. Heus, Carson Hunter, Sanda Ionescu, J. Iverson, H. Jagadish, C. Lagoze, Jared Lyle, Alexander Mueller, Sigbjørn Revheim, M. Richardson, Ørnulf Risnes, Karunakara Seelam, Dan J. Smith, T. Smith, Jie Song, Y. Vaidya, Ole Voldsater
{"title":"统计数据的源元数据:结构化数据转换语言(SDTL)简介","authors":"George Alter, Darrell Donakowski, J. Gager, P. Heus, Carson Hunter, Sanda Ionescu, J. Iverson, H. Jagadish, C. Lagoze, Jared Lyle, Alexander Mueller, Sigbjørn Revheim, M. Richardson, Ørnulf Risnes, Karunakara Seelam, Dan J. Smith, T. Smith, Jie Song, Y. Vaidya, Ole Voldsater","doi":"10.29173/iq983","DOIUrl":null,"url":null,"abstract":"Structured Data Transformation Language (SDTL) provides structured, machine actionable representations of data transformation commands found in statistical analysis software.   The Continuous Capture of Metadata for Statistical Data Project (C2Metadata) created SDTL as part of an automated system that captures provenance metadata from data transformation scripts and adds variable derivations to standard metadata files.  SDTL also has potential for auditing scripts and for translating scripts between languages.  SDTL is expressed in a set of JSON schemas, which are machine actionable and easily serialized to other formats.  Statistical software languages have a number of special features that have been carried into SDTL.  We explain how SDTL handles differences among statistical languages and complex operations, such as merging files and reshaping data tables from “wide” to “long”. ","PeriodicalId":84870,"journal":{"name":"IASSIST quarterly","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Provenance metadata for statistical data: An introduction to Structured Data Transformation Language (SDTL)\",\"authors\":\"George Alter, Darrell Donakowski, J. Gager, P. Heus, Carson Hunter, Sanda Ionescu, J. Iverson, H. Jagadish, C. Lagoze, Jared Lyle, Alexander Mueller, Sigbjørn Revheim, M. Richardson, Ørnulf Risnes, Karunakara Seelam, Dan J. Smith, T. Smith, Jie Song, Y. Vaidya, Ole Voldsater\",\"doi\":\"10.29173/iq983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Structured Data Transformation Language (SDTL) provides structured, machine actionable representations of data transformation commands found in statistical analysis software.   The Continuous Capture of Metadata for Statistical Data Project (C2Metadata) created SDTL as part of an automated system that captures provenance metadata from data transformation scripts and adds variable derivations to standard metadata files.  SDTL also has potential for auditing scripts and for translating scripts between languages.  SDTL is expressed in a set of JSON schemas, which are machine actionable and easily serialized to other formats.  Statistical software languages have a number of special features that have been carried into SDTL.  We explain how SDTL handles differences among statistical languages and complex operations, such as merging files and reshaping data tables from “wide” to “long”. \",\"PeriodicalId\":84870,\"journal\":{\"name\":\"IASSIST quarterly\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IASSIST quarterly\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29173/iq983\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IASSIST quarterly","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29173/iq983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

结构化数据转换语言(SDTL)为统计分析软件中的数据转换命令提供结构化的、机器可操作的表示。统计数据元数据持续捕获项目(C2Metadata)创建了SDTL,作为自动化系统的一部分,该系统从数据转换脚本中捕获出处元数据,并将变量派生添加到标准元数据文件中。SDTL还具有审计脚本和在语言之间翻译脚本的潜力。SDTL用一组JSON模式表示,这些模式可在机器上操作,并且很容易序列化为其他格式。统计软件语言具有许多特殊功能,这些功能已被纳入SDTL中。我们解释了SDTL如何处理统计语言和复杂操作之间的差异,例如合并文件和将数据表从“宽”改为“长”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Provenance metadata for statistical data: An introduction to Structured Data Transformation Language (SDTL)
Structured Data Transformation Language (SDTL) provides structured, machine actionable representations of data transformation commands found in statistical analysis software.   The Continuous Capture of Metadata for Statistical Data Project (C2Metadata) created SDTL as part of an automated system that captures provenance metadata from data transformation scripts and adds variable derivations to standard metadata files.  SDTL also has potential for auditing scripts and for translating scripts between languages.  SDTL is expressed in a set of JSON schemas, which are machine actionable and easily serialized to other formats.  Statistical software languages have a number of special features that have been carried into SDTL.  We explain how SDTL handles differences among statistical languages and complex operations, such as merging files and reshaping data tables from “wide” to “long”. 
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信