Giorgia Bussu , Mark Taylor , Kristiina Tammimies , Angelica Ronald , Terje Falck-Ytter
{"title":"新兴认知能力的潜在结构:一项婴儿双胞胎研究","authors":"Giorgia Bussu , Mark Taylor , Kristiina Tammimies , Angelica Ronald , Terje Falck-Ytter","doi":"10.1016/j.intell.2023.101771","DOIUrl":null,"url":null,"abstract":"<div><p>It is well known that genetic factors account for up to 70% of variability in cognition from childhood to adulthood. However, less is known about the first year of life. This study investigated the etiological factors influencing individual variability in different domains of emerging cognitive and motor abilities in early infancy, and to what extent genetic and environmental influences are unique or shared across different domains. We compared multivariate twin models built on scores from the five scales of the Mullen Scales of Early Learning (MSEL) in a community sample of monozygotic and dizygotic twins at 5 months of age (n=567). The results indicated a hierarchical etiological structure whereby a general genetic latent factor accounted for 54% of variance underlying the different domains of emerging cognitive and motor abilities (A=0.54, confidence interval CI=[0; 0.82]). We also found additional genetic influences that were specific to early motor and language development. Unlike previous findings on older children, we did not find significant influences of shared environment on the shared factor (C=0, CI=[0, 0.57]), or any specific scale. Furthermore, influences of unique environment, which include measurement error, were moderate and statistically significant (E=0.46, CI=0.18; 0.81]). This study provides strong evidence for a unitary hierarchical structure across different domains of emerging cognition. Evidence that a single common etiological factor, which we term <em>infant g</em>, contributes to a range of different abilities supports the view that in young infants, intrinsic and general neurodevelopmental processes are key drivers of observable behavioural differences in specific domains.</p></div>","PeriodicalId":13862,"journal":{"name":"Intelligence","volume":"99 ","pages":"Article 101771"},"PeriodicalIF":3.3000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The latent structure of emerging cognitive abilities: An infant twin study\",\"authors\":\"Giorgia Bussu , Mark Taylor , Kristiina Tammimies , Angelica Ronald , Terje Falck-Ytter\",\"doi\":\"10.1016/j.intell.2023.101771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It is well known that genetic factors account for up to 70% of variability in cognition from childhood to adulthood. However, less is known about the first year of life. This study investigated the etiological factors influencing individual variability in different domains of emerging cognitive and motor abilities in early infancy, and to what extent genetic and environmental influences are unique or shared across different domains. We compared multivariate twin models built on scores from the five scales of the Mullen Scales of Early Learning (MSEL) in a community sample of monozygotic and dizygotic twins at 5 months of age (n=567). The results indicated a hierarchical etiological structure whereby a general genetic latent factor accounted for 54% of variance underlying the different domains of emerging cognitive and motor abilities (A=0.54, confidence interval CI=[0; 0.82]). We also found additional genetic influences that were specific to early motor and language development. Unlike previous findings on older children, we did not find significant influences of shared environment on the shared factor (C=0, CI=[0, 0.57]), or any specific scale. Furthermore, influences of unique environment, which include measurement error, were moderate and statistically significant (E=0.46, CI=0.18; 0.81]). This study provides strong evidence for a unitary hierarchical structure across different domains of emerging cognition. Evidence that a single common etiological factor, which we term <em>infant g</em>, contributes to a range of different abilities supports the view that in young infants, intrinsic and general neurodevelopmental processes are key drivers of observable behavioural differences in specific domains.</p></div>\",\"PeriodicalId\":13862,\"journal\":{\"name\":\"Intelligence\",\"volume\":\"99 \",\"pages\":\"Article 101771\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligence\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0160289623000521\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0160289623000521","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
The latent structure of emerging cognitive abilities: An infant twin study
It is well known that genetic factors account for up to 70% of variability in cognition from childhood to adulthood. However, less is known about the first year of life. This study investigated the etiological factors influencing individual variability in different domains of emerging cognitive and motor abilities in early infancy, and to what extent genetic and environmental influences are unique or shared across different domains. We compared multivariate twin models built on scores from the five scales of the Mullen Scales of Early Learning (MSEL) in a community sample of monozygotic and dizygotic twins at 5 months of age (n=567). The results indicated a hierarchical etiological structure whereby a general genetic latent factor accounted for 54% of variance underlying the different domains of emerging cognitive and motor abilities (A=0.54, confidence interval CI=[0; 0.82]). We also found additional genetic influences that were specific to early motor and language development. Unlike previous findings on older children, we did not find significant influences of shared environment on the shared factor (C=0, CI=[0, 0.57]), or any specific scale. Furthermore, influences of unique environment, which include measurement error, were moderate and statistically significant (E=0.46, CI=0.18; 0.81]). This study provides strong evidence for a unitary hierarchical structure across different domains of emerging cognition. Evidence that a single common etiological factor, which we term infant g, contributes to a range of different abilities supports the view that in young infants, intrinsic and general neurodevelopmental processes are key drivers of observable behavioural differences in specific domains.
期刊介绍:
This unique journal in psychology is devoted to publishing original research and theoretical studies and review papers that substantially contribute to the understanding of intelligence. It provides a new source of significant papers in psychometrics, tests and measurement, and all other empirical and theoretical studies in intelligence and mental retardation.