评价页岩在压裂液中分散性的实验方法

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
I. A. Muggli, K. Chellappah, I. Collins
{"title":"评价页岩在压裂液中分散性的实验方法","authors":"I. A. Muggli, K. Chellappah, I. Collins","doi":"10.2118/197044-PA","DOIUrl":null,"url":null,"abstract":"\n We propose an experimental approach to evaluate how typical fluids influence shale dispersion. In this approach, finely ground shale is left to settle in the fracturing fluid, generating particle-size and concentration profiles within the settling column. Samples are taken at various settling times and depths and then analyzed with regard to turbidity and capillary-suction-time (CST) behavior. Particle-size-distribution (PSD) measurements are used to further substantiate analysis. Turbidity data indicate the volume of particles present, and PSD data indicate the sizes of these particles (or flocs). This approach was tested using ground shale, Eagle Ford brine (EFB), and three typical fluid additives. Without additives present, shale flocculation resulted in rapid particle settling, and samples taken from suspension gave low turbidity and CST values. With additives present, suspensions were better dispersed and hence tended to give higher CST values. Some additives hindered flocculation more effectively than others. The results suggest that low CST numbers might not always be desirable; additives that are good inhibitors might hinder flocculation of shale particulates and hence promote higher CST numbers. In this paper we discuss how our proposed experimental approach can give insights into the influence of additives on the degree and nature of shale dispersion.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2118/197044-PA","citationCount":"1","resultStr":"{\"title\":\"An Experimental Approach To Assess the Dispersion of Shale in Fracturing Fluids\",\"authors\":\"I. A. Muggli, K. Chellappah, I. Collins\",\"doi\":\"10.2118/197044-PA\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We propose an experimental approach to evaluate how typical fluids influence shale dispersion. In this approach, finely ground shale is left to settle in the fracturing fluid, generating particle-size and concentration profiles within the settling column. Samples are taken at various settling times and depths and then analyzed with regard to turbidity and capillary-suction-time (CST) behavior. Particle-size-distribution (PSD) measurements are used to further substantiate analysis. Turbidity data indicate the volume of particles present, and PSD data indicate the sizes of these particles (or flocs). This approach was tested using ground shale, Eagle Ford brine (EFB), and three typical fluid additives. Without additives present, shale flocculation resulted in rapid particle settling, and samples taken from suspension gave low turbidity and CST values. With additives present, suspensions were better dispersed and hence tended to give higher CST values. Some additives hindered flocculation more effectively than others. The results suggest that low CST numbers might not always be desirable; additives that are good inhibitors might hinder flocculation of shale particulates and hence promote higher CST numbers. In this paper we discuss how our proposed experimental approach can give insights into the influence of additives on the degree and nature of shale dispersion.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2118/197044-PA\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2118/197044-PA\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2118/197044-PA","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一种实验方法来评估典型流体如何影响页岩分散。在这种方法中,将细磨页岩留在压裂液中沉降,在沉降柱内产生颗粒尺寸和浓度分布。在不同的沉降时间和深度采集样品,然后分析浊度和毛细管抽吸时间(CST)行为。粒度分布(PSD)测量用于进一步证实分析。浊度数据表示存在的颗粒的体积,PSD数据表示这些颗粒(或絮凝物)的大小。该方法使用地面页岩、Eagle Ford盐水(EFB)和三种典型的流体添加剂进行了测试。在没有添加剂的情况下,页岩絮凝导致颗粒快速沉降,从悬浮液中提取的样品浊度和CST值较低。在存在添加剂的情况下,悬浮液更好地分散,因此倾向于给出更高的CST值。一些添加剂比其他添加剂更有效地阻碍絮凝。结果表明,低CST数可能并不总是可取的;作为良好抑制剂的添加剂可能阻碍页岩颗粒的絮凝,从而促进更高的CST值。在本文中,我们讨论了我们提出的实验方法如何深入了解添加剂对页岩分散程度和性质的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Experimental Approach To Assess the Dispersion of Shale in Fracturing Fluids
We propose an experimental approach to evaluate how typical fluids influence shale dispersion. In this approach, finely ground shale is left to settle in the fracturing fluid, generating particle-size and concentration profiles within the settling column. Samples are taken at various settling times and depths and then analyzed with regard to turbidity and capillary-suction-time (CST) behavior. Particle-size-distribution (PSD) measurements are used to further substantiate analysis. Turbidity data indicate the volume of particles present, and PSD data indicate the sizes of these particles (or flocs). This approach was tested using ground shale, Eagle Ford brine (EFB), and three typical fluid additives. Without additives present, shale flocculation resulted in rapid particle settling, and samples taken from suspension gave low turbidity and CST values. With additives present, suspensions were better dispersed and hence tended to give higher CST values. Some additives hindered flocculation more effectively than others. The results suggest that low CST numbers might not always be desirable; additives that are good inhibitors might hinder flocculation of shale particulates and hence promote higher CST numbers. In this paper we discuss how our proposed experimental approach can give insights into the influence of additives on the degree and nature of shale dispersion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信