{"title":"稳定曲线上奇异主束的模空间","authors":"Á. L. M. Castañeda","doi":"10.1515/advgeom-2020-0003","DOIUrl":null,"url":null,"abstract":"Abstract We prove the existence of a linearization for singular principal G-bundles not depending on the base curve. This allow us to construct the relative compact moduli space of δ-(semi)stable singular principal G-bundles over families of reduced projective and connected nodal curves, and to reduce the construction of the universal moduli space over 𝓜g to the construction of the universal moduli space of swamps.","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/advgeom-2020-0003","citationCount":"5","resultStr":"{\"title\":\"On the moduli spaces of singular principal bundles on stable curves\",\"authors\":\"Á. L. M. Castañeda\",\"doi\":\"10.1515/advgeom-2020-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We prove the existence of a linearization for singular principal G-bundles not depending on the base curve. This allow us to construct the relative compact moduli space of δ-(semi)stable singular principal G-bundles over families of reduced projective and connected nodal curves, and to reduce the construction of the universal moduli space over 𝓜g to the construction of the universal moduli space of swamps.\",\"PeriodicalId\":7335,\"journal\":{\"name\":\"Advances in Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/advgeom-2020-0003\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/advgeom-2020-0003\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/advgeom-2020-0003","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the moduli spaces of singular principal bundles on stable curves
Abstract We prove the existence of a linearization for singular principal G-bundles not depending on the base curve. This allow us to construct the relative compact moduli space of δ-(semi)stable singular principal G-bundles over families of reduced projective and connected nodal curves, and to reduce the construction of the universal moduli space over 𝓜g to the construction of the universal moduli space of swamps.
期刊介绍:
Advances in Geometry is a mathematical journal for the publication of original research articles of excellent quality in the area of geometry. Geometry is a field of long standing-tradition and eminent importance. The study of space and spatial patterns is a major mathematical activity; geometric ideas and geometric language permeate all of mathematics.