一种新型二硅酸锂玻璃陶瓷喷涂在ZrO2基板上用于牙齿修复的多技术研究

Q1 Materials Science
D. Möncke, R. Ehrt, D. Palles, I. Efthimiopoulos, E. Kamitsos, M. Johannes
{"title":"一种新型二硅酸锂玻璃陶瓷喷涂在ZrO2基板上用于牙齿修复的多技术研究","authors":"D. Möncke, R. Ehrt, D. Palles, I. Efthimiopoulos, E. Kamitsos, M. Johannes","doi":"10.1515/bglass-2017-0004","DOIUrl":null,"url":null,"abstract":"Abstract An alkali niobate-silicate veneer ceramic for ZrO2-based dental restoration was developed and characterized for its physical properties and structure. The properties were adjusted for dental applications. The new lithium disilicate glass-ceramic VBK (sold as cerafusion or LiSi) can easily be applied by spray coating to any individually formed ZrO2-matrix and needs only one final tempering treatment. The surface of the glass-ceramic is very smooth. The color of the already translucent glass-ceramic can be adjusted to that of individual natural teeth. The structure of the glass-ceramicwas studied by XRD and Ramanspectroscopy as a function of heat-treatment and of spatial variations within the material and at its interfaces. ToF SIMS, SEM and thermal analysis techniques were applied to investigate the crystallization behavior and surface-interface reactions. XRD and Raman spectroscopy identified different crystalline phases in the amorphous glass matrix including Li2Si2O5, Li2SiO3, NaxLi(1−x)NbO3 and Na3NbO4. The Raman spectrum of the amorphous matrix is dominated by the vibrational activity of the highly polarizable niobate units with a prominent feature at 865 cm−1, assigned to Nb-O stretching in NbO6 octahedra, which have non-bridging oxygen atoms and are connected to the silicate matrix rather than to other niobate polyhedra.","PeriodicalId":37354,"journal":{"name":"Biomedical Glasses","volume":"3 1","pages":"41 - 55"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/bglass-2017-0004","citationCount":"16","resultStr":"{\"title\":\"A multi technique study of a new lithium disilicate glass-ceramic spray-coated on ZrO2 substrate for dental restoration\",\"authors\":\"D. Möncke, R. Ehrt, D. Palles, I. Efthimiopoulos, E. Kamitsos, M. Johannes\",\"doi\":\"10.1515/bglass-2017-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract An alkali niobate-silicate veneer ceramic for ZrO2-based dental restoration was developed and characterized for its physical properties and structure. The properties were adjusted for dental applications. The new lithium disilicate glass-ceramic VBK (sold as cerafusion or LiSi) can easily be applied by spray coating to any individually formed ZrO2-matrix and needs only one final tempering treatment. The surface of the glass-ceramic is very smooth. The color of the already translucent glass-ceramic can be adjusted to that of individual natural teeth. The structure of the glass-ceramicwas studied by XRD and Ramanspectroscopy as a function of heat-treatment and of spatial variations within the material and at its interfaces. ToF SIMS, SEM and thermal analysis techniques were applied to investigate the crystallization behavior and surface-interface reactions. XRD and Raman spectroscopy identified different crystalline phases in the amorphous glass matrix including Li2Si2O5, Li2SiO3, NaxLi(1−x)NbO3 and Na3NbO4. The Raman spectrum of the amorphous matrix is dominated by the vibrational activity of the highly polarizable niobate units with a prominent feature at 865 cm−1, assigned to Nb-O stretching in NbO6 octahedra, which have non-bridging oxygen atoms and are connected to the silicate matrix rather than to other niobate polyhedra.\",\"PeriodicalId\":37354,\"journal\":{\"name\":\"Biomedical Glasses\",\"volume\":\"3 1\",\"pages\":\"41 - 55\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/bglass-2017-0004\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Glasses\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/bglass-2017-0004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Glasses","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/bglass-2017-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 16

摘要

摘要研制了一种用于zro2基牙体修复的碱铌酸盐硅酸单板陶瓷,并对其物理性能和结构进行了表征。根据牙科应用调整了性能。新的二硅酸锂玻璃陶瓷VBK(作为cerafusion或LiSi出售)可以很容易地通过喷涂涂层应用到任何单独形成的zro2基体上,只需要最后一次回火处理。玻璃陶瓷的表面很光滑。已经半透明的玻璃陶瓷的颜色可以调整为单个天然牙齿的颜色。利用XRD和拉曼光谱研究了玻璃陶瓷的结构与热处理、材料内部和界面空间变化的关系。利用ToF SIMS、SEM和热分析技术研究了结晶行为和表面界面反应。XRD和拉曼光谱鉴定了非晶玻璃基体的不同晶相,包括Li2Si2O5、Li2SiO3、NaxLi(1−x)NbO3和Na3NbO4。非晶基体的拉曼光谱主要由高度极化的铌酸盐单元的振动活性所控制,其振动活性在865 cm−1处具有显著特征,分配给NbO6八面体中的Nb-O拉伸,NbO6八面体具有非桥接氧原子,与硅酸盐基体相连,而不是与其他铌酸盐多面体相连。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multi technique study of a new lithium disilicate glass-ceramic spray-coated on ZrO2 substrate for dental restoration
Abstract An alkali niobate-silicate veneer ceramic for ZrO2-based dental restoration was developed and characterized for its physical properties and structure. The properties were adjusted for dental applications. The new lithium disilicate glass-ceramic VBK (sold as cerafusion or LiSi) can easily be applied by spray coating to any individually formed ZrO2-matrix and needs only one final tempering treatment. The surface of the glass-ceramic is very smooth. The color of the already translucent glass-ceramic can be adjusted to that of individual natural teeth. The structure of the glass-ceramicwas studied by XRD and Ramanspectroscopy as a function of heat-treatment and of spatial variations within the material and at its interfaces. ToF SIMS, SEM and thermal analysis techniques were applied to investigate the crystallization behavior and surface-interface reactions. XRD and Raman spectroscopy identified different crystalline phases in the amorphous glass matrix including Li2Si2O5, Li2SiO3, NaxLi(1−x)NbO3 and Na3NbO4. The Raman spectrum of the amorphous matrix is dominated by the vibrational activity of the highly polarizable niobate units with a prominent feature at 865 cm−1, assigned to Nb-O stretching in NbO6 octahedra, which have non-bridging oxygen atoms and are connected to the silicate matrix rather than to other niobate polyhedra.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical Glasses
Biomedical Glasses Materials Science-Surfaces, Coatings and Films
自引率
0.00%
发文量
0
审稿时长
17 weeks
期刊介绍: Biomedical Glasses is an international Open Access-only journal covering the field of glasses for biomedical applications. The scope of the journal covers the science and technology of glasses and glass-based materials intended for applications in medicine and dentistry. It includes: Chemistry, physics, structure, design and characterization of biomedical glasses Surface science and interactions of biomedical glasses with aqueous and biological media Modeling structure and reactivity of biomedical glasses and their interfaces Biocompatibility of biomedical glasses Processing of biomedical glasses to achieve specific forms and functionality Biomedical glass coatings and composites In vitro and in vivo evaluation of biomedical glasses Glasses and glass-ceramics in engineered regeneration of tissues and organs Glass-based devices for medical and dental applications Application of glasses and glass-ceramics in healthcare.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信