平面域内距离的尖锐估计

Pub Date : 2019-05-20 DOI:10.4310/arkiv.2020.v58.n1.a9
Danka Luvci'c, Enrico Pasqualetto, T. Rajala
{"title":"平面域内距离的尖锐估计","authors":"Danka Luvci'c, Enrico Pasqualetto, T. Rajala","doi":"10.4310/arkiv.2020.v58.n1.a9","DOIUrl":null,"url":null,"abstract":"We show that the inner distance inside a bounded planar domain is at most the one-dimensional Hausdorff measure of the boundary of the domain. We prove this sharp result by establishing an improved Painleve length estimate for connected sets and by using the metric removability of totally disconnected sets, proven by Kalmykov, Kovalev, and Rajala. We also give a totally disconnected example showing that for general sets the Painleve length bound $\\kappa(E) \\le\\pi \\mathcal{H}^1(E)$ is sharp.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sharp estimate on the inner distance in planar domains\",\"authors\":\"Danka Luvci'c, Enrico Pasqualetto, T. Rajala\",\"doi\":\"10.4310/arkiv.2020.v58.n1.a9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the inner distance inside a bounded planar domain is at most the one-dimensional Hausdorff measure of the boundary of the domain. We prove this sharp result by establishing an improved Painleve length estimate for connected sets and by using the metric removability of totally disconnected sets, proven by Kalmykov, Kovalev, and Rajala. We also give a totally disconnected example showing that for general sets the Painleve length bound $\\\\kappa(E) \\\\le\\\\pi \\\\mathcal{H}^1(E)$ is sharp.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/arkiv.2020.v58.n1.a9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/arkiv.2020.v58.n1.a9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们证明了有界平面区域内的距离最多是该区域边界的一维豪斯多夫测度。我们通过建立一个改进的连通集的Painleve长度估计和使用Kalmykov, Kovalev和Rajala证明的完全不连通集的度量可移除性来证明这个尖锐的结果。我们还给出了一个完全不相关的例子,表明对于一般设置painlevel长度界限$\kappa(E) \le\pi \mathcal{H}^1(E)$是尖锐的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Sharp estimate on the inner distance in planar domains
We show that the inner distance inside a bounded planar domain is at most the one-dimensional Hausdorff measure of the boundary of the domain. We prove this sharp result by establishing an improved Painleve length estimate for connected sets and by using the metric removability of totally disconnected sets, proven by Kalmykov, Kovalev, and Rajala. We also give a totally disconnected example showing that for general sets the Painleve length bound $\kappa(E) \le\pi \mathcal{H}^1(E)$ is sharp.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信