四维上的一个中心Kähler度量的共同源性

IF 0.5 4区 数学 Q3 MATHEMATICS
Thalia D. Jeffres, G. Maschler, Robert Ream
{"title":"四维上的一个中心Kähler度量的共同源性","authors":"Thalia D. Jeffres, G. Maschler, Robert Ream","doi":"10.1515/advgeom-2023-0011","DOIUrl":null,"url":null,"abstract":"Abstract A Kähler metric is called central if the determinant of its Ricci endomorphism is constant; see [12]. For the case in which this constant is zero, we study on 4-manifolds the existence of complete metrics of this type which have cohomogeneity one for three unimodular 3-dimensional Lie groups: SU(2), the group E(2) of Euclidean plane motions, and a quotient by a discrete subgroup of the Heisenberg group nil3. We obtain a complete classification for SU(2), and some existence results for the other two groups, in terms of specific solutions of an associated ODE system.","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cohomogeneity one central Kähler metrics in dimension four\",\"authors\":\"Thalia D. Jeffres, G. Maschler, Robert Ream\",\"doi\":\"10.1515/advgeom-2023-0011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A Kähler metric is called central if the determinant of its Ricci endomorphism is constant; see [12]. For the case in which this constant is zero, we study on 4-manifolds the existence of complete metrics of this type which have cohomogeneity one for three unimodular 3-dimensional Lie groups: SU(2), the group E(2) of Euclidean plane motions, and a quotient by a discrete subgroup of the Heisenberg group nil3. We obtain a complete classification for SU(2), and some existence results for the other two groups, in terms of specific solutions of an associated ODE system.\",\"PeriodicalId\":7335,\"journal\":{\"name\":\"Advances in Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/advgeom-2023-0011\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/advgeom-2023-0011","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要如果Kähler度量的Ricci自同态的行列式是常数,则称其为中心度量;参见[12]。对于这个常数为零的情况,我们在4-流形上研究了这类完全度量的存在性,这些度量对于三个单模三维李群具有上同根性1:SU(2),欧几里得平面运动的群E(2)和海森堡群nil3的离散子群的商。根据相关ODE系统的具体解,我们得到了SU(2)的一个完整分类,以及其他两组的一些存在性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cohomogeneity one central Kähler metrics in dimension four
Abstract A Kähler metric is called central if the determinant of its Ricci endomorphism is constant; see [12]. For the case in which this constant is zero, we study on 4-manifolds the existence of complete metrics of this type which have cohomogeneity one for three unimodular 3-dimensional Lie groups: SU(2), the group E(2) of Euclidean plane motions, and a quotient by a discrete subgroup of the Heisenberg group nil3. We obtain a complete classification for SU(2), and some existence results for the other two groups, in terms of specific solutions of an associated ODE system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Geometry
Advances in Geometry 数学-数学
CiteScore
1.00
自引率
0.00%
发文量
31
审稿时长
>12 weeks
期刊介绍: Advances in Geometry is a mathematical journal for the publication of original research articles of excellent quality in the area of geometry. Geometry is a field of long standing-tradition and eminent importance. The study of space and spatial patterns is a major mathematical activity; geometric ideas and geometric language permeate all of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信