{"title":"四维上的一个中心Kähler度量的共同源性","authors":"Thalia D. Jeffres, G. Maschler, Robert Ream","doi":"10.1515/advgeom-2023-0011","DOIUrl":null,"url":null,"abstract":"Abstract A Kähler metric is called central if the determinant of its Ricci endomorphism is constant; see [12]. For the case in which this constant is zero, we study on 4-manifolds the existence of complete metrics of this type which have cohomogeneity one for three unimodular 3-dimensional Lie groups: SU(2), the group E(2) of Euclidean plane motions, and a quotient by a discrete subgroup of the Heisenberg group nil3. We obtain a complete classification for SU(2), and some existence results for the other two groups, in terms of specific solutions of an associated ODE system.","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cohomogeneity one central Kähler metrics in dimension four\",\"authors\":\"Thalia D. Jeffres, G. Maschler, Robert Ream\",\"doi\":\"10.1515/advgeom-2023-0011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A Kähler metric is called central if the determinant of its Ricci endomorphism is constant; see [12]. For the case in which this constant is zero, we study on 4-manifolds the existence of complete metrics of this type which have cohomogeneity one for three unimodular 3-dimensional Lie groups: SU(2), the group E(2) of Euclidean plane motions, and a quotient by a discrete subgroup of the Heisenberg group nil3. We obtain a complete classification for SU(2), and some existence results for the other two groups, in terms of specific solutions of an associated ODE system.\",\"PeriodicalId\":7335,\"journal\":{\"name\":\"Advances in Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/advgeom-2023-0011\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/advgeom-2023-0011","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Cohomogeneity one central Kähler metrics in dimension four
Abstract A Kähler metric is called central if the determinant of its Ricci endomorphism is constant; see [12]. For the case in which this constant is zero, we study on 4-manifolds the existence of complete metrics of this type which have cohomogeneity one for three unimodular 3-dimensional Lie groups: SU(2), the group E(2) of Euclidean plane motions, and a quotient by a discrete subgroup of the Heisenberg group nil3. We obtain a complete classification for SU(2), and some existence results for the other two groups, in terms of specific solutions of an associated ODE system.
期刊介绍:
Advances in Geometry is a mathematical journal for the publication of original research articles of excellent quality in the area of geometry. Geometry is a field of long standing-tradition and eminent importance. The study of space and spatial patterns is a major mathematical activity; geometric ideas and geometric language permeate all of mathematics.