{"title":"核子形态因子的格点QCD测定现状及其与少数GeV中微子程序的相关性","authors":"A. Meyer, A. Walker-Loud, C. Wilkinson","doi":"10.1146/annurev-nucl-010622-120608","DOIUrl":null,"url":null,"abstract":"Calculations of neutrino–nucleus cross sections begin with the neutrino–nucleon interaction, making the latter critically important to flagship neutrino oscillation experiments despite limited measurements with poor statistics. Alternatively, lattice quantum chromodynamics (LQCD) can be used to determine these interactions from the Standard Model with quantifiable theoretical uncertainties. Recent LQCD results of gA are in excellent agreement with data, and results for the (quasi-)elastic nucleon form factors with full uncertainty budgets are expected within a few years. We review the status of the field and LQCD results for the nucleon axial form factor, FA( Q2), a major source of uncertainty in modeling sub-GeV neutrino–nucleon interactions. Results from different LQCD calculations are consistent but collectively disagree with existing models, with potential implications for current and future neutrino oscillation experiments. We describe a road map to solidify confidence in the LQCD results and discuss future calculations of more complicated processes, which are important to few-GeV neutrino oscillation experiments. Expected final online publication date for the Annual Review of Nuclear and Particle Science, Volume 72 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8090,"journal":{"name":"Annual Review of Nuclear and Particle Science","volume":null,"pages":null},"PeriodicalIF":9.1000,"publicationDate":"2022-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Status of Lattice QCD Determination of Nucleon Form Factors and Their Relevance for the Few-GeV Neutrino Program\",\"authors\":\"A. Meyer, A. Walker-Loud, C. Wilkinson\",\"doi\":\"10.1146/annurev-nucl-010622-120608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Calculations of neutrino–nucleus cross sections begin with the neutrino–nucleon interaction, making the latter critically important to flagship neutrino oscillation experiments despite limited measurements with poor statistics. Alternatively, lattice quantum chromodynamics (LQCD) can be used to determine these interactions from the Standard Model with quantifiable theoretical uncertainties. Recent LQCD results of gA are in excellent agreement with data, and results for the (quasi-)elastic nucleon form factors with full uncertainty budgets are expected within a few years. We review the status of the field and LQCD results for the nucleon axial form factor, FA( Q2), a major source of uncertainty in modeling sub-GeV neutrino–nucleon interactions. Results from different LQCD calculations are consistent but collectively disagree with existing models, with potential implications for current and future neutrino oscillation experiments. We describe a road map to solidify confidence in the LQCD results and discuss future calculations of more complicated processes, which are important to few-GeV neutrino oscillation experiments. Expected final online publication date for the Annual Review of Nuclear and Particle Science, Volume 72 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.\",\"PeriodicalId\":8090,\"journal\":{\"name\":\"Annual Review of Nuclear and Particle Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2022-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Nuclear and Particle Science\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-nucl-010622-120608\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Nuclear and Particle Science","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1146/annurev-nucl-010622-120608","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
Status of Lattice QCD Determination of Nucleon Form Factors and Their Relevance for the Few-GeV Neutrino Program
Calculations of neutrino–nucleus cross sections begin with the neutrino–nucleon interaction, making the latter critically important to flagship neutrino oscillation experiments despite limited measurements with poor statistics. Alternatively, lattice quantum chromodynamics (LQCD) can be used to determine these interactions from the Standard Model with quantifiable theoretical uncertainties. Recent LQCD results of gA are in excellent agreement with data, and results for the (quasi-)elastic nucleon form factors with full uncertainty budgets are expected within a few years. We review the status of the field and LQCD results for the nucleon axial form factor, FA( Q2), a major source of uncertainty in modeling sub-GeV neutrino–nucleon interactions. Results from different LQCD calculations are consistent but collectively disagree with existing models, with potential implications for current and future neutrino oscillation experiments. We describe a road map to solidify confidence in the LQCD results and discuss future calculations of more complicated processes, which are important to few-GeV neutrino oscillation experiments. Expected final online publication date for the Annual Review of Nuclear and Particle Science, Volume 72 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
期刊介绍:
The Annual Review of Nuclear and Particle Science is a publication that has been available since 1952. It focuses on various aspects of nuclear and particle science, including both theoretical and experimental developments. The journal covers topics such as nuclear structure, heavy ion interactions, oscillations observed in solar and atmospheric neutrinos, the physics of heavy quarks, the impact of particle and nuclear physics on astroparticle physics, and recent advancements in accelerator design and instrumentation.
One significant recent change in the journal is the conversion of its current volume from gated to open access. This conversion was made possible through Annual Reviews' Subscribe to Open program. As a result, all articles published in the current volume are now freely available to the public under a CC BY license. This change allows for greater accessibility and dissemination of research in the field of nuclear and particle science.