{"title":"植物树皮类吸附剂对污染物的吸附研究进展","authors":"Joshua O. Ighalo, Adewale George Adeniyi","doi":"10.1016/j.jwpe.2020.101228","DOIUrl":null,"url":null,"abstract":"<div><p>Plant barks are among the most widely applied low-cost biomass materials in the study of pollutant removal from aqueous media. This paper extensively reviews the experimental findings presented in open literature with much focus on the last 15 years. This study classified plant bark adsorbents into 5 broad groups (based on their preparation technique): unmodified biosorbent, pre-modified biosorbent, chemically modified biosorbent, physically modified biosorbent and bio-based activated carbon. It was observed that eucalyptus, pine, neem, acacia and mango are the most explored source species in tree bark adsorption studies. About two-third of target impurities reported on the subject in open literature have been on heavy metals. The review elucidated the excellent adsorption capacities of plant bark based adsorbents and biosorbents for the uptake of heavy metals, dyes, pesticides and other pollutants. Adsorption was majorly best-fit to either the Langmuir or Freundlich isotherm models and the pseudo-second order kinetic model. The thermodynamics findings revealed that the adsorption is highly spontaneous and is by a physical mechanism in most cases. It was also observed that plant barks have high reusability potential thereby underlying their usefulness for industrial application. Knowledge gaps in the research area were also discussed in line with future perspectives.</p></div>","PeriodicalId":17528,"journal":{"name":"Journal of water process engineering","volume":"35 ","pages":"Article 101228"},"PeriodicalIF":6.7000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jwpe.2020.101228","citationCount":"98","resultStr":"{\"title\":\"Adsorption of pollutants by plant bark derived adsorbents: An empirical review\",\"authors\":\"Joshua O. Ighalo, Adewale George Adeniyi\",\"doi\":\"10.1016/j.jwpe.2020.101228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Plant barks are among the most widely applied low-cost biomass materials in the study of pollutant removal from aqueous media. This paper extensively reviews the experimental findings presented in open literature with much focus on the last 15 years. This study classified plant bark adsorbents into 5 broad groups (based on their preparation technique): unmodified biosorbent, pre-modified biosorbent, chemically modified biosorbent, physically modified biosorbent and bio-based activated carbon. It was observed that eucalyptus, pine, neem, acacia and mango are the most explored source species in tree bark adsorption studies. About two-third of target impurities reported on the subject in open literature have been on heavy metals. The review elucidated the excellent adsorption capacities of plant bark based adsorbents and biosorbents for the uptake of heavy metals, dyes, pesticides and other pollutants. Adsorption was majorly best-fit to either the Langmuir or Freundlich isotherm models and the pseudo-second order kinetic model. The thermodynamics findings revealed that the adsorption is highly spontaneous and is by a physical mechanism in most cases. It was also observed that plant barks have high reusability potential thereby underlying their usefulness for industrial application. Knowledge gaps in the research area were also discussed in line with future perspectives.</p></div>\",\"PeriodicalId\":17528,\"journal\":{\"name\":\"Journal of water process engineering\",\"volume\":\"35 \",\"pages\":\"Article 101228\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jwpe.2020.101228\",\"citationCount\":\"98\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of water process engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214714420301070\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of water process engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214714420301070","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Adsorption of pollutants by plant bark derived adsorbents: An empirical review
Plant barks are among the most widely applied low-cost biomass materials in the study of pollutant removal from aqueous media. This paper extensively reviews the experimental findings presented in open literature with much focus on the last 15 years. This study classified plant bark adsorbents into 5 broad groups (based on their preparation technique): unmodified biosorbent, pre-modified biosorbent, chemically modified biosorbent, physically modified biosorbent and bio-based activated carbon. It was observed that eucalyptus, pine, neem, acacia and mango are the most explored source species in tree bark adsorption studies. About two-third of target impurities reported on the subject in open literature have been on heavy metals. The review elucidated the excellent adsorption capacities of plant bark based adsorbents and biosorbents for the uptake of heavy metals, dyes, pesticides and other pollutants. Adsorption was majorly best-fit to either the Langmuir or Freundlich isotherm models and the pseudo-second order kinetic model. The thermodynamics findings revealed that the adsorption is highly spontaneous and is by a physical mechanism in most cases. It was also observed that plant barks have high reusability potential thereby underlying their usefulness for industrial application. Knowledge gaps in the research area were also discussed in line with future perspectives.
期刊介绍:
The Journal of Water Process Engineering aims to publish refereed, high-quality research papers with significant novelty and impact in all areas of the engineering of water and wastewater processing . Papers on advanced and novel treatment processes and technologies are particularly welcome. The Journal considers papers in areas such as nanotechnology and biotechnology applications in water, novel oxidation and separation processes, membrane processes (except those for desalination) , catalytic processes for the removal of water contaminants, sustainable processes, water reuse and recycling, water use and wastewater minimization, integrated/hybrid technology, process modeling of water treatment and novel treatment processes. Submissions on the subject of adsorbents, including standard measurements of adsorption kinetics and equilibrium will only be considered if there is a genuine case for novelty and contribution, for example highly novel, sustainable adsorbents and their use: papers on activated carbon-type materials derived from natural matter, or surfactant-modified clays and related minerals, would not fulfil this criterion. The Journal particularly welcomes contributions involving environmentally, economically and socially sustainable technology for water treatment, including those which are energy-efficient, with minimal or no chemical consumption, and capable of water recycling and reuse that minimizes the direct disposal of wastewater to the aquatic environment. Papers that describe novel ideas for solving issues related to water quality and availability are also welcome, as are those that show the transfer of techniques from other disciplines. The Journal will consider papers dealing with processes for various water matrices including drinking water (except desalination), domestic, urban and industrial wastewaters, in addition to their residues. It is expected that the journal will be of particular relevance to chemical and process engineers working in the field. The Journal welcomes Full Text papers, Short Communications, State-of-the-Art Reviews and Letters to Editors and Case Studies