{"title":"膜冷却与混合冷却的流动结构比较:CFD研究","authors":"R. Panda, A. K. Pujari, B. Gudla","doi":"10.1515/tjj-2022-0058","DOIUrl":null,"url":null,"abstract":"Abstract Film and jet impingement cooling are widely used techniques in gas turbine vane and blade cooling. The present work investigates and compares the flow structure of a film-cooled flat plate with a hybrid cooling scheme. The hybrid cooling scheme combines both impingement hole and film holes and is named combined impingement-film (IFC) cooling. Experimental validation and computational analyses are carried out on a flat plate with film holes. Different flow parameters, such as velocity pattern, Turbulent kinetic energy, and streamline flow structure, are compared for the two cases in different regions of the flat plate. It is observed that the hybrid scheme shows advantages over film cooling. The jet-to-jet interaction, jet crossflow interaction, and vortex formation are the main factors affecting film cooling performance. There is a 52 % drop in turbulent kinetic energy for the hybrid cooling compared to the film cooling at the film hole exit. More mixing in the coolant and mainstream interaction is observed for the FC case than in the IFC.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Flow structure comparison of film cooling versus hybrid cooling: a CFD study\",\"authors\":\"R. Panda, A. K. Pujari, B. Gudla\",\"doi\":\"10.1515/tjj-2022-0058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Film and jet impingement cooling are widely used techniques in gas turbine vane and blade cooling. The present work investigates and compares the flow structure of a film-cooled flat plate with a hybrid cooling scheme. The hybrid cooling scheme combines both impingement hole and film holes and is named combined impingement-film (IFC) cooling. Experimental validation and computational analyses are carried out on a flat plate with film holes. Different flow parameters, such as velocity pattern, Turbulent kinetic energy, and streamline flow structure, are compared for the two cases in different regions of the flat plate. It is observed that the hybrid scheme shows advantages over film cooling. The jet-to-jet interaction, jet crossflow interaction, and vortex formation are the main factors affecting film cooling performance. There is a 52 % drop in turbulent kinetic energy for the hybrid cooling compared to the film cooling at the film hole exit. More mixing in the coolant and mainstream interaction is observed for the FC case than in the IFC.\",\"PeriodicalId\":50284,\"journal\":{\"name\":\"International Journal of Turbo & Jet-Engines\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Turbo & Jet-Engines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/tjj-2022-0058\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Turbo & Jet-Engines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/tjj-2022-0058","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Flow structure comparison of film cooling versus hybrid cooling: a CFD study
Abstract Film and jet impingement cooling are widely used techniques in gas turbine vane and blade cooling. The present work investigates and compares the flow structure of a film-cooled flat plate with a hybrid cooling scheme. The hybrid cooling scheme combines both impingement hole and film holes and is named combined impingement-film (IFC) cooling. Experimental validation and computational analyses are carried out on a flat plate with film holes. Different flow parameters, such as velocity pattern, Turbulent kinetic energy, and streamline flow structure, are compared for the two cases in different regions of the flat plate. It is observed that the hybrid scheme shows advantages over film cooling. The jet-to-jet interaction, jet crossflow interaction, and vortex formation are the main factors affecting film cooling performance. There is a 52 % drop in turbulent kinetic energy for the hybrid cooling compared to the film cooling at the film hole exit. More mixing in the coolant and mainstream interaction is observed for the FC case than in the IFC.
期刊介绍:
The Main aim and scope of this Journal is to help improve each separate components R&D and superimpose separated results to get integrated systems by striving to reach the overall advanced design and benefits by integrating: (a) Physics, Aero, and Stealth Thermodynamics in simulations by flying unmanned or manned prototypes supported by integrated Computer Simulations based on: (b) Component R&D of: (i) Turbo and Jet-Engines, (ii) Airframe, (iii) Helmet-Aiming-Systems and Ammunition based on: (c) Anticipated New Programs Missions based on (d) IMPROVED RELIABILITY, DURABILITY, ECONOMICS, TACTICS, STRATEGIES and EDUCATION in both the civil and military domains of Turbo and Jet Engines.
The International Journal of Turbo & Jet Engines is devoted to cutting edge research in theory and design of propagation of jet aircraft. It serves as an international publication organ for new ideas, insights and results from industry and academic research on thermodynamics, combustion, behavior of related materials at high temperatures, turbine and engine design, thrust vectoring and flight control as well as energy and environmental issues.