玉米茎纤维增强石膏基复合材料声学性能的模拟

IF 4 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Fibers Pub Date : 2023-03-04 DOI:10.3390/fib11030026
Virginia Puyana-Romero, Wilson Andrés Jaramillo Cevallos, Giuseppe Ciaburro
{"title":"玉米茎纤维增强石膏基复合材料声学性能的模拟","authors":"Virginia Puyana-Romero, Wilson Andrés Jaramillo Cevallos, Giuseppe Ciaburro","doi":"10.3390/fib11030026","DOIUrl":null,"url":null,"abstract":"Environmental sustainability and environmental protection are key to shaping the built environment. The use of environmentally sustainable materials in architecture is essential to transform urban centers into modern, sustainable cities, reducing the pollution of air and natural ecosystems, lowering gas emissions, and improving the energy efficiency of structures. In this study, corn processing waste was used as a reinforcing material to create a plaster matrix composite material for use as a sound absorption material. Specimens of two thicknesses were created, and the sound absorption coefficient (SAC) was measured by applying the normal incidence technique. Subsequently, a simulation model for predicting SAC using Artificial Neural Network (ANN) algorithms was utilized to compare the absorption performance of the specimens. The fibers extracted from the corn stem significantly improved the sound absorption performance of the gypsum matrix specimens. This is due to the increase in the porosity of the material caused by the adhesion between the fiber and the plaster which creates air pockets due to the roughness of the fiber. The simulation model appears to be effective in predicting the absorption properties of the material, as indicated by the results.","PeriodicalId":12122,"journal":{"name":"Fibers","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2023-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Simulation of Acoustic Properties of Plaster Matrix Composite MATERIAL Reinforced with Corn Stem Fibers\",\"authors\":\"Virginia Puyana-Romero, Wilson Andrés Jaramillo Cevallos, Giuseppe Ciaburro\",\"doi\":\"10.3390/fib11030026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Environmental sustainability and environmental protection are key to shaping the built environment. The use of environmentally sustainable materials in architecture is essential to transform urban centers into modern, sustainable cities, reducing the pollution of air and natural ecosystems, lowering gas emissions, and improving the energy efficiency of structures. In this study, corn processing waste was used as a reinforcing material to create a plaster matrix composite material for use as a sound absorption material. Specimens of two thicknesses were created, and the sound absorption coefficient (SAC) was measured by applying the normal incidence technique. Subsequently, a simulation model for predicting SAC using Artificial Neural Network (ANN) algorithms was utilized to compare the absorption performance of the specimens. The fibers extracted from the corn stem significantly improved the sound absorption performance of the gypsum matrix specimens. This is due to the increase in the porosity of the material caused by the adhesion between the fiber and the plaster which creates air pockets due to the roughness of the fiber. The simulation model appears to be effective in predicting the absorption properties of the material, as indicated by the results.\",\"PeriodicalId\":12122,\"journal\":{\"name\":\"Fibers\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2023-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fibers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fib11030026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fib11030026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

环境可持续性和环境保护是塑造建筑环境的关键。在建筑中使用环境可持续材料对于将城市中心转变为现代化,可持续发展的城市,减少空气和自然生态系统的污染,降低气体排放,提高结构的能源效率至关重要。本研究以玉米加工废料为增强材料,制备石膏基复合材料作为吸声材料。制作了两种厚度的试样,采用法向入射法测量了吸声系数。随后,利用人工神经网络(ANN)算法预测SAC的模拟模型,比较了试件的吸收性能。从玉米茎中提取的纤维显著提高了石膏基试样的吸声性能。这是由于纤维和石膏之间的粘连引起的材料孔隙率的增加,由于纤维的粗糙度而产生气穴。结果表明,该模拟模型能够有效地预测材料的吸收特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulation of Acoustic Properties of Plaster Matrix Composite MATERIAL Reinforced with Corn Stem Fibers
Environmental sustainability and environmental protection are key to shaping the built environment. The use of environmentally sustainable materials in architecture is essential to transform urban centers into modern, sustainable cities, reducing the pollution of air and natural ecosystems, lowering gas emissions, and improving the energy efficiency of structures. In this study, corn processing waste was used as a reinforcing material to create a plaster matrix composite material for use as a sound absorption material. Specimens of two thicknesses were created, and the sound absorption coefficient (SAC) was measured by applying the normal incidence technique. Subsequently, a simulation model for predicting SAC using Artificial Neural Network (ANN) algorithms was utilized to compare the absorption performance of the specimens. The fibers extracted from the corn stem significantly improved the sound absorption performance of the gypsum matrix specimens. This is due to the increase in the porosity of the material caused by the adhesion between the fiber and the plaster which creates air pockets due to the roughness of the fiber. The simulation model appears to be effective in predicting the absorption properties of the material, as indicated by the results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fibers
Fibers Engineering-Civil and Structural Engineering
CiteScore
7.00
自引率
7.70%
发文量
92
审稿时长
11 weeks
期刊介绍: Fibers (ISSN 2079-6439) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes and short communications on the materials science and all other empirical and theoretical studies of fibers, providing a forum for integrating fiber research across many disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. The following topics are relevant and within the scope of this journal: -textile fibers -natural fibers and biological microfibrils -metallic fibers -optic fibers -carbon fibers -silicon carbide fibers -fiberglass -mineral fibers -cellulose fibers -polymer fibers -microfibers, nanofibers and nanotubes -new processing methods for fibers -chemistry of fiber materials -physical properties of fibers -exposure to and toxicology of fibers -biokinetics of fibers -the diversity of fiber origins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信