锂离子电池分式建模与参数辨识

IF 2.4 4区 化学 Q3 CHEMISTRY, PHYSICAL
Ionics Pub Date : 2022-07-18 DOI:10.1007/s11581-022-04658-5
Zeyu Jiang, Junhong Li, Lei Li, Juping Gu
{"title":"锂离子电池分式建模与参数辨识","authors":"Zeyu Jiang,&nbsp;Junhong Li,&nbsp;Lei Li,&nbsp;Juping Gu","doi":"10.1007/s11581-022-04658-5","DOIUrl":null,"url":null,"abstract":"<div><p>To simulate and control the lithium-ion battery system more effectively, it is necessary to establish a specific physical model of lithium-ion battery. The partnership for a new generation of vehicle (PNGV) model is a kind of equivalent circuit models which has low-complexity. Firstly, this paper introduces the PNGV model, and then derives the fractional PNGV model improved by fractional-order impedance elements. Furthermore, a random mutation ant colony optimization (RMACO) adapted to the fractional parameter identification is proposed, which uses the collected voltage and current data to perform parameter identification of the fractional PNGV model. Finally, the proposed algorithm is compared with the particle swarm optimization (PSO) algorithm, the absolute error and the average relative error of the RMACO are all less than the PSO. The results show that the RMACO has better parameter estimation effectiveness.</p></div>","PeriodicalId":599,"journal":{"name":"Ionics","volume":"28 9","pages":"4135 - 4148"},"PeriodicalIF":2.4000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Fractional modeling and parameter identification of lithium-ion battery\",\"authors\":\"Zeyu Jiang,&nbsp;Junhong Li,&nbsp;Lei Li,&nbsp;Juping Gu\",\"doi\":\"10.1007/s11581-022-04658-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To simulate and control the lithium-ion battery system more effectively, it is necessary to establish a specific physical model of lithium-ion battery. The partnership for a new generation of vehicle (PNGV) model is a kind of equivalent circuit models which has low-complexity. Firstly, this paper introduces the PNGV model, and then derives the fractional PNGV model improved by fractional-order impedance elements. Furthermore, a random mutation ant colony optimization (RMACO) adapted to the fractional parameter identification is proposed, which uses the collected voltage and current data to perform parameter identification of the fractional PNGV model. Finally, the proposed algorithm is compared with the particle swarm optimization (PSO) algorithm, the absolute error and the average relative error of the RMACO are all less than the PSO. The results show that the RMACO has better parameter estimation effectiveness.</p></div>\",\"PeriodicalId\":599,\"journal\":{\"name\":\"Ionics\",\"volume\":\"28 9\",\"pages\":\"4135 - 4148\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ionics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11581-022-04658-5\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ionics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11581-022-04658-5","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 6

摘要

为了更有效地对锂离子电池系统进行仿真和控制,有必要建立特定的锂离子电池物理模型。新一代汽车伙伴关系模型是一种复杂度较低的等效电路模型。首先介绍了PNGV模型,然后推导了分数阶阻抗单元改进的分数阶PNGV模型。在此基础上,提出了一种适用于分数阶参数辨识的随机突变蚁群算法(RMACO),利用采集到的电压和电流数据对分数阶PNGV模型进行参数辨识。最后,将所提算法与粒子群优化(PSO)算法进行比较,RMACO算法的绝对误差和平均相对误差均小于PSO算法。结果表明,RMACO算法具有较好的参数估计效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fractional modeling and parameter identification of lithium-ion battery

Fractional modeling and parameter identification of lithium-ion battery

To simulate and control the lithium-ion battery system more effectively, it is necessary to establish a specific physical model of lithium-ion battery. The partnership for a new generation of vehicle (PNGV) model is a kind of equivalent circuit models which has low-complexity. Firstly, this paper introduces the PNGV model, and then derives the fractional PNGV model improved by fractional-order impedance elements. Furthermore, a random mutation ant colony optimization (RMACO) adapted to the fractional parameter identification is proposed, which uses the collected voltage and current data to perform parameter identification of the fractional PNGV model. Finally, the proposed algorithm is compared with the particle swarm optimization (PSO) algorithm, the absolute error and the average relative error of the RMACO are all less than the PSO. The results show that the RMACO has better parameter estimation effectiveness.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ionics
Ionics 化学-电化学
CiteScore
5.30
自引率
7.10%
发文量
427
审稿时长
2.2 months
期刊介绍: Ionics is publishing original results in the fields of science and technology of ionic motion. This includes theoretical, experimental and practical work on electrolytes, electrode, ionic/electronic interfaces, ionic transport aspects of corrosion, galvanic cells, e.g. for thermodynamic and kinetic studies, batteries, fuel cells, sensors and electrochromics. Fast solid ionic conductors are presently providing new opportunities in view of several advantages, in addition to conventional liquid electrolytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信