Gustavo S. DO Amaral Costa, G. Figueiredo, J. C. Junior
{"title":"一个具有临界指数的非周期不定变分问题","authors":"Gustavo S. DO Amaral Costa, G. Figueiredo, J. C. Junior","doi":"10.1017/S0013091523000330","DOIUrl":null,"url":null,"abstract":"Abstract We consider the non-linear Schrödinger equation (Pμ)\\begin{equation*}\n\\begin{array}{lc}\n-\\Delta u + V(x) u = \\mu f(u) + |u|^{2^*-2}u, &\n\\end{array}\n\\end{equation*}in $\\mathbb{R}^N$, $N\\geq3$, where V changes sign and $f(s)/s$, s ≠ 0, is bounded, with V non-periodic in x. The existence of a solution is established employing spectral theory, a general linking theorem due to [12] and interaction between translated solutions of the problem at infinity with some qualitative properties of them.","PeriodicalId":20586,"journal":{"name":"Proceedings of the Edinburgh Mathematical Society","volume":"66 1","pages":"579 - 612"},"PeriodicalIF":0.7000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A non-periodic indefinite variational problem in ℝN with critical exponent\",\"authors\":\"Gustavo S. DO Amaral Costa, G. Figueiredo, J. C. Junior\",\"doi\":\"10.1017/S0013091523000330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider the non-linear Schrödinger equation (Pμ)\\\\begin{equation*}\\n\\\\begin{array}{lc}\\n-\\\\Delta u + V(x) u = \\\\mu f(u) + |u|^{2^*-2}u, &\\n\\\\end{array}\\n\\\\end{equation*}in $\\\\mathbb{R}^N$, $N\\\\geq3$, where V changes sign and $f(s)/s$, s ≠ 0, is bounded, with V non-periodic in x. The existence of a solution is established employing spectral theory, a general linking theorem due to [12] and interaction between translated solutions of the problem at infinity with some qualitative properties of them.\",\"PeriodicalId\":20586,\"journal\":{\"name\":\"Proceedings of the Edinburgh Mathematical Society\",\"volume\":\"66 1\",\"pages\":\"579 - 612\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Edinburgh Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/S0013091523000330\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Edinburgh Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0013091523000330","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
摘要考虑$\mathbb{R}^N$, $N\geq3$中的非线性Schrödinger方程(Pμ) \begin{equation*}\begin{array}{lc}-\Delta u + V(x) u = \mu f(u) + |u|^{2^*-2}u, &\end{array}\end{equation*},其中V改变符号,$f(s)/s$, s≠0,是有界的,且V在x上是非周期的。利用谱理论、由[12]引起的一般联系定理和问题无穷远处平移解之间的相互作用以及它们的一些定性性质,建立了解的存在性。
A non-periodic indefinite variational problem in ℝN with critical exponent
Abstract We consider the non-linear Schrödinger equation (Pμ)\begin{equation*}
\begin{array}{lc}
-\Delta u + V(x) u = \mu f(u) + |u|^{2^*-2}u, &
\end{array}
\end{equation*}in $\mathbb{R}^N$, $N\geq3$, where V changes sign and $f(s)/s$, s ≠ 0, is bounded, with V non-periodic in x. The existence of a solution is established employing spectral theory, a general linking theorem due to [12] and interaction between translated solutions of the problem at infinity with some qualitative properties of them.
期刊介绍:
The Edinburgh Mathematical Society was founded in 1883 and over the years, has evolved into the principal society for the promotion of mathematics research in Scotland. The Society has published its Proceedings since 1884. This journal contains research papers on topics in a broad range of pure and applied mathematics, together with a number of topical book reviews.