一个具有临界指数的非周期不定变分问题

Pub Date : 2023-05-01 DOI:10.1017/S0013091523000330
Gustavo S. DO Amaral Costa, G. Figueiredo, J. C. Junior
{"title":"一个具有临界指数的非周期不定变分问题","authors":"Gustavo S. DO Amaral Costa, G. Figueiredo, J. C. Junior","doi":"10.1017/S0013091523000330","DOIUrl":null,"url":null,"abstract":"Abstract We consider the non-linear Schrödinger equation (Pμ)\\begin{equation*}\n\\begin{array}{lc}\n-\\Delta u + V(x) u = \\mu f(u) + |u|^{2^*-2}u, &\n\\end{array}\n\\end{equation*}in $\\mathbb{R}^N$, $N\\geq3$, where V changes sign and $f(s)/s$, s ≠ 0, is bounded, with V non-periodic in x. The existence of a solution is established employing spectral theory, a general linking theorem due to [12] and interaction between translated solutions of the problem at infinity with some qualitative properties of them.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A non-periodic indefinite variational problem in ℝN with critical exponent\",\"authors\":\"Gustavo S. DO Amaral Costa, G. Figueiredo, J. C. Junior\",\"doi\":\"10.1017/S0013091523000330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider the non-linear Schrödinger equation (Pμ)\\\\begin{equation*}\\n\\\\begin{array}{lc}\\n-\\\\Delta u + V(x) u = \\\\mu f(u) + |u|^{2^*-2}u, &\\n\\\\end{array}\\n\\\\end{equation*}in $\\\\mathbb{R}^N$, $N\\\\geq3$, where V changes sign and $f(s)/s$, s ≠ 0, is bounded, with V non-periodic in x. The existence of a solution is established employing spectral theory, a general linking theorem due to [12] and interaction between translated solutions of the problem at infinity with some qualitative properties of them.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/S0013091523000330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0013091523000330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要考虑$\mathbb{R}^N$, $N\geq3$中的非线性Schrödinger方程(Pμ) \begin{equation*}\begin{array}{lc}-\Delta u + V(x) u = \mu f(u) + |u|^{2^*-2}u, &\end{array}\end{equation*},其中V改变符号,$f(s)/s$, s≠0,是有界的,且V在x上是非周期的。利用谱理论、由[12]引起的一般联系定理和问题无穷远处平移解之间的相互作用以及它们的一些定性性质,建立了解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A non-periodic indefinite variational problem in ℝN with critical exponent
Abstract We consider the non-linear Schrödinger equation (Pμ)\begin{equation*} \begin{array}{lc} -\Delta u + V(x) u = \mu f(u) + |u|^{2^*-2}u, & \end{array} \end{equation*}in $\mathbb{R}^N$, $N\geq3$, where V changes sign and $f(s)/s$, s ≠ 0, is bounded, with V non-periodic in x. The existence of a solution is established employing spectral theory, a general linking theorem due to [12] and interaction between translated solutions of the problem at infinity with some qualitative properties of them.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信