高阶Bernstein-Kantorovich算子

IF 0.8 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES
Anjali, Vijay Gupta
{"title":"高阶Bernstein-Kantorovich算子","authors":"Anjali,&nbsp;Vijay Gupta","doi":"10.1007/s40010-022-00804-w","DOIUrl":null,"url":null,"abstract":"<div><p>In the present paper, we consider the higher-order (<i>j</i>-th order, <span>\\(j\\in \\textbf{N}_{0}\\)</span>) Bernstein–Kantorovich operators, which are connected with the Bernstein polynomials. We estimate some direct results including the Voronovskaja-kind asymptotic formula, simultaneous approximation and error estimations. In the end, we present comparative study through graphical representation and numerically interpret the upper bound of the error value.</p></div>","PeriodicalId":744,"journal":{"name":"Proceedings of the National Academy of Sciences, India Section A: Physical Sciences","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Higher-Order Bernstein–Kantorovich Operators\",\"authors\":\"Anjali,&nbsp;Vijay Gupta\",\"doi\":\"10.1007/s40010-022-00804-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the present paper, we consider the higher-order (<i>j</i>-th order, <span>\\\\(j\\\\in \\\\textbf{N}_{0}\\\\)</span>) Bernstein–Kantorovich operators, which are connected with the Bernstein polynomials. We estimate some direct results including the Voronovskaja-kind asymptotic formula, simultaneous approximation and error estimations. In the end, we present comparative study through graphical representation and numerically interpret the upper bound of the error value.</p></div>\",\"PeriodicalId\":744,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences, India Section A: Physical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences, India Section A: Physical Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40010-022-00804-w\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences, India Section A: Physical Sciences","FirstCategoryId":"103","ListUrlMain":"https://link.springer.com/article/10.1007/s40010-022-00804-w","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们考虑与Bernstein多项式相关的高阶(j阶,\(j\in \textbf{N}_{0}\)) Bernstein - kantorovich算子。我们估计了一些直接结果,包括voronovskaja型渐近公式、同时逼近和误差估计。最后,通过图形表示进行了对比研究,并对误差值的上界进行了数值解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Higher-Order Bernstein–Kantorovich Operators

Higher-Order Bernstein–Kantorovich Operators

In the present paper, we consider the higher-order (j-th order, \(j\in \textbf{N}_{0}\)) Bernstein–Kantorovich operators, which are connected with the Bernstein polynomials. We estimate some direct results including the Voronovskaja-kind asymptotic formula, simultaneous approximation and error estimations. In the end, we present comparative study through graphical representation and numerically interpret the upper bound of the error value.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
37
审稿时长
>12 weeks
期刊介绍: To promote research in all the branches of Science & Technology; and disseminate the knowledge and advancements in Science & Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信