格序群的拟恩格尔变异体

IF 0.6 4区 数学 Q3 MATHEMATICS
Michael R. Darnel
{"title":"格序群的拟恩格尔变异体","authors":"Michael R. Darnel","doi":"10.1007/s00012-022-00796-z","DOIUrl":null,"url":null,"abstract":"<div><p>We show that any ordered group satisfying the identity <span>\\([x_1^{k_1}, \\ldots , x_n^{k_n}] = e\\)</span> must be weakly abelian and that when <span>\\(x_i \\not = x_1\\)</span> for <span>\\(2 \\le i \\le n\\)</span>, <span>\\(\\ell \\)</span>-groups satisfying the identity <span>\\([x_1^n, \\ldots , x_k^n] = e\\)</span> also satisfy the identity <span>\\((x \\vee e)^{y^n} \\le (x \\vee e)^2\\)</span>. These results are used to study the structure of <span>\\(\\ell \\)</span>-groups satisfying identities of the form <span>\\([x_1^{k_1}, x_2^{k_2}, x_3^{k_3}] = e\\)</span>.</p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quasi-Engel varieties of lattice-ordered groups\",\"authors\":\"Michael R. Darnel\",\"doi\":\"10.1007/s00012-022-00796-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We show that any ordered group satisfying the identity <span>\\\\([x_1^{k_1}, \\\\ldots , x_n^{k_n}] = e\\\\)</span> must be weakly abelian and that when <span>\\\\(x_i \\\\not = x_1\\\\)</span> for <span>\\\\(2 \\\\le i \\\\le n\\\\)</span>, <span>\\\\(\\\\ell \\\\)</span>-groups satisfying the identity <span>\\\\([x_1^n, \\\\ldots , x_k^n] = e\\\\)</span> also satisfy the identity <span>\\\\((x \\\\vee e)^{y^n} \\\\le (x \\\\vee e)^2\\\\)</span>. These results are used to study the structure of <span>\\\\(\\\\ell \\\\)</span>-groups satisfying identities of the form <span>\\\\([x_1^{k_1}, x_2^{k_2}, x_3^{k_3}] = e\\\\)</span>.</p></div>\",\"PeriodicalId\":50827,\"journal\":{\"name\":\"Algebra Universalis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra Universalis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00012-022-00796-z\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra Universalis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00012-022-00796-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了满足恒等式\([x_1^{k_1},\ldots,x_n^{k_n}]=e\)的任何有序群都必须是弱可交换的,并且当\(x_i\not=x_1\)对于\(2\le i\le n\),\(\ell\)-满足恒等式的群\([x_1^n,\ldot,x_k^n]=e=)也满足恒等式((x\vee e e)^{y^n}\le(x\ve e e)^2)。这些结果用于研究满足形式为([x_1^{k_1},x_2^{k_2},x_3^{k_3}]=e\)的恒等式的\(\ell\)-群的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quasi-Engel varieties of lattice-ordered groups

We show that any ordered group satisfying the identity \([x_1^{k_1}, \ldots , x_n^{k_n}] = e\) must be weakly abelian and that when \(x_i \not = x_1\) for \(2 \le i \le n\), \(\ell \)-groups satisfying the identity \([x_1^n, \ldots , x_k^n] = e\) also satisfy the identity \((x \vee e)^{y^n} \le (x \vee e)^2\). These results are used to study the structure of \(\ell \)-groups satisfying identities of the form \([x_1^{k_1}, x_2^{k_2}, x_3^{k_3}] = e\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebra Universalis
Algebra Universalis 数学-数学
CiteScore
1.00
自引率
16.70%
发文量
34
审稿时长
3 months
期刊介绍: Algebra Universalis publishes papers in universal algebra, lattice theory, and related fields. In a pragmatic way, one could define the areas of interest of the journal as the union of the areas of interest of the members of the Editorial Board. In addition to research papers, we are also interested in publishing high quality survey articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信