Job Taminiau, J. Byrne, Jongkyu Kim, Min-Hwi Kim, J. Seo
{"title":"基于推断和测量的方法估计韩国首尔特大城市屋顶“太阳能城市”的潜力","authors":"Job Taminiau, J. Byrne, Jongkyu Kim, Min-Hwi Kim, J. Seo","doi":"10.1002/wene.438","DOIUrl":null,"url":null,"abstract":"Data analysis and collection techniques now allow for detailed inventory‐building of urban rooftops for the purposes of identifying solar energy potential within geographically defined boundaries, including those of cities. The complexity and inherent diversity of a city's building stock has propelled the introduction of many so‐called “solar city” assessment methods that, with varying levels of accuracy, scalability, and ease of use, seek to characterize the citywide solar photovoltaic (PV) resource potential. A review of the landscape of available methods supports a fundamental distinction across two classes of methods. First, “solar city” assessment methods can principally rely on inference to identify and characterize rooftop solar potential. Such inferential methods can establish estimates of citywide solar potential without needing direct insight into rooftop conditions or morphology, Second, measurement‐based methods estimate rooftop solar opportunities based on the direct measurement of rooftop conditions, often conducted through remote sensing. Comparative performance testing of several inferential‐ and measurement‐based methods using case study analysis underscores the importance of measurement‐based methods. In particular, measurement‐based methods are likely better positioned to support the needs of policy‐makers and investors interested in transforming a city or metropolitan area into a sustainable city whose buildings serve as the host of a new solar PV‐powered distributed electricity service system.","PeriodicalId":48766,"journal":{"name":"Wiley Interdisciplinary Reviews-Energy and Environment","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Inferential‐ and measurement‐based methods to estimate rooftop “solar city” potential in megacity Seoul, South Korea\",\"authors\":\"Job Taminiau, J. Byrne, Jongkyu Kim, Min-Hwi Kim, J. Seo\",\"doi\":\"10.1002/wene.438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data analysis and collection techniques now allow for detailed inventory‐building of urban rooftops for the purposes of identifying solar energy potential within geographically defined boundaries, including those of cities. The complexity and inherent diversity of a city's building stock has propelled the introduction of many so‐called “solar city” assessment methods that, with varying levels of accuracy, scalability, and ease of use, seek to characterize the citywide solar photovoltaic (PV) resource potential. A review of the landscape of available methods supports a fundamental distinction across two classes of methods. First, “solar city” assessment methods can principally rely on inference to identify and characterize rooftop solar potential. Such inferential methods can establish estimates of citywide solar potential without needing direct insight into rooftop conditions or morphology, Second, measurement‐based methods estimate rooftop solar opportunities based on the direct measurement of rooftop conditions, often conducted through remote sensing. Comparative performance testing of several inferential‐ and measurement‐based methods using case study analysis underscores the importance of measurement‐based methods. In particular, measurement‐based methods are likely better positioned to support the needs of policy‐makers and investors interested in transforming a city or metropolitan area into a sustainable city whose buildings serve as the host of a new solar PV‐powered distributed electricity service system.\",\"PeriodicalId\":48766,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews-Energy and Environment\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews-Energy and Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/wene.438\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Energy and Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/wene.438","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Inferential‐ and measurement‐based methods to estimate rooftop “solar city” potential in megacity Seoul, South Korea
Data analysis and collection techniques now allow for detailed inventory‐building of urban rooftops for the purposes of identifying solar energy potential within geographically defined boundaries, including those of cities. The complexity and inherent diversity of a city's building stock has propelled the introduction of many so‐called “solar city” assessment methods that, with varying levels of accuracy, scalability, and ease of use, seek to characterize the citywide solar photovoltaic (PV) resource potential. A review of the landscape of available methods supports a fundamental distinction across two classes of methods. First, “solar city” assessment methods can principally rely on inference to identify and characterize rooftop solar potential. Such inferential methods can establish estimates of citywide solar potential without needing direct insight into rooftop conditions or morphology, Second, measurement‐based methods estimate rooftop solar opportunities based on the direct measurement of rooftop conditions, often conducted through remote sensing. Comparative performance testing of several inferential‐ and measurement‐based methods using case study analysis underscores the importance of measurement‐based methods. In particular, measurement‐based methods are likely better positioned to support the needs of policy‐makers and investors interested in transforming a city or metropolitan area into a sustainable city whose buildings serve as the host of a new solar PV‐powered distributed electricity service system.
期刊介绍:
Wiley Interdisciplinary Reviews: Energy and Environmentis a new type of review journal covering all aspects of energy technology, security and environmental impact.
Energy is one of the most critical resources for the welfare and prosperity of society. It also causes adverse environmental and societal effects, notably climate change which is the severest global problem in the modern age. Finding satisfactory solutions to the challenges ahead will need a linking of energy technology innovations, security, energy poverty, and environmental and climate impacts. The broad scope of energy issues demands collaboration between different disciplines of science and technology, and strong interaction between engineering, physical and life scientists, economists, sociologists and policy-makers.