机器学习在大型SMA焊缝金属数据库回归分析中的应用

IF 2.2 3区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
Rajan Varadarajan, K. Sampath
{"title":"机器学习在大型SMA焊缝金属数据库回归分析中的应用","authors":"Rajan Varadarajan, K. Sampath","doi":"10.29391/2023.102.004","DOIUrl":null,"url":null,"abstract":"A machine learning approach was used to perform a regression analysis of Evans’s shielded metal arc (SMA) weld metal (WM) database involving several groups of Fe-C-Mn high-strength steels. The objective of this investigation was to develop an expression for austenite-to-ferrite (Ar3) transformation temperature that also included the effects of principal and minor alloy elements (in wt-%) and weld cooling rate (in °C/s) and relate this expression with WM ultimate tensile strength (UTS). The Ar3 data from 257 records obtained from several selected sources were combined with Ar3 projections at extreme end points in Evans’s WM database. Subsequently, a cluster analysis was performed. The data in Evans’s database was filtered with the carbon equivalent number limited to 0.3 maximum, carbon content limited to 0.1 wt-% maximum, nitrogen content limited to 99 ppm (0.0099 wt-%) maximum, preassigned Ar3 values limited to 680°C minimum, and WM UTS limited to 710 MPa maximum. The results provided a good approximation to the expression for Ar3 transformation temperature in terms of elemental compositions and cooling rate. This allowed the Ar3 to correlate with WM UTS of Fe-C-Mn in at least four ways depending on the sign of correlation of the data clusters. The elemental combinations in the cluster with the highest negative correlation revealed highly predictable WM UTS. In particular, the new Ar3 expression helped to predict decreases observed in certain Ar3 experimental data on WMs with balanced Ti, B, Al, N, and O additions reported among 13 records with additional dilatometry results. This correlation between the new expression for the Ar3 temperature and UTS of Fe-C-Mn WM is expected to complement the Japan Welding Engineering Society artificial neural network model currently available to predict Charpy V-notch test temperature for 28 J absorbed energy based on WM chemical composition. It will thereby provide a pair of effective tools for efficient development and/or evaluation of high-performance welding electrodes based on an Fe-C-Mn system for demand-critical applications.","PeriodicalId":23681,"journal":{"name":"Welding Journal","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Application of Machine Learning to Regression Analysis of a Large SMA Weld Metal Database\",\"authors\":\"Rajan Varadarajan, K. Sampath\",\"doi\":\"10.29391/2023.102.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A machine learning approach was used to perform a regression analysis of Evans’s shielded metal arc (SMA) weld metal (WM) database involving several groups of Fe-C-Mn high-strength steels. The objective of this investigation was to develop an expression for austenite-to-ferrite (Ar3) transformation temperature that also included the effects of principal and minor alloy elements (in wt-%) and weld cooling rate (in °C/s) and relate this expression with WM ultimate tensile strength (UTS). The Ar3 data from 257 records obtained from several selected sources were combined with Ar3 projections at extreme end points in Evans’s WM database. Subsequently, a cluster analysis was performed. The data in Evans’s database was filtered with the carbon equivalent number limited to 0.3 maximum, carbon content limited to 0.1 wt-% maximum, nitrogen content limited to 99 ppm (0.0099 wt-%) maximum, preassigned Ar3 values limited to 680°C minimum, and WM UTS limited to 710 MPa maximum. The results provided a good approximation to the expression for Ar3 transformation temperature in terms of elemental compositions and cooling rate. This allowed the Ar3 to correlate with WM UTS of Fe-C-Mn in at least four ways depending on the sign of correlation of the data clusters. The elemental combinations in the cluster with the highest negative correlation revealed highly predictable WM UTS. In particular, the new Ar3 expression helped to predict decreases observed in certain Ar3 experimental data on WMs with balanced Ti, B, Al, N, and O additions reported among 13 records with additional dilatometry results. This correlation between the new expression for the Ar3 temperature and UTS of Fe-C-Mn WM is expected to complement the Japan Welding Engineering Society artificial neural network model currently available to predict Charpy V-notch test temperature for 28 J absorbed energy based on WM chemical composition. It will thereby provide a pair of effective tools for efficient development and/or evaluation of high-performance welding electrodes based on an Fe-C-Mn system for demand-critical applications.\",\"PeriodicalId\":23681,\"journal\":{\"name\":\"Welding Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Welding Journal\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.29391/2023.102.004\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Welding Journal","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.29391/2023.102.004","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 1

摘要

使用机器学习方法对Evans的屏蔽金属电弧(SMA)焊缝金属(WM)数据库进行回归分析,该数据库涉及几组Fe-C-Mn高强度钢。本研究的目的是建立一个奥氏体到铁素体(Ar3)转变温度的表达式,该表达式还包括主要和次要合金元素(wt-%)和焊接冷却速度(°C/s)的影响,并将该表达式与WM极限抗拉强度(UTS)联系起来。从几个选定的来源获得的257条记录的Ar3数据与Evans的WM数据库中极端端点的Ar3预估相结合。随后,进行聚类分析。对Evans数据库中的数据进行过滤,碳当量最大限制为0.3,碳含量最大限制为0.1 wt-%,氮含量最大限制为99 ppm (0.0099 wt-%),预分配的Ar3值最小限制为680°C, WM UTS最大限制为710 MPa。结果与元素组成和冷却速率的Ar3相变温度表达式有很好的近似。这使得Ar3至少以四种方式与Fe-C-Mn的WM UTS相关,这取决于数据簇的相关符号。具有最高负相关的集群中的元素组合显示出高度可预测的WM UTS。特别是,新的Ar3表达有助于预测在含有平衡Ti, B, Al, N和O的WMs上某些Ar3实验数据的减少,这些数据在13个具有额外扩张测量结果的记录中报道。这种新的Ar3温度表达式与Fe-C-Mn WM的UTS之间的相关性有望补充日本焊接工程学会目前可用的基于WM化学成分预测28 J吸收能量的Charpy v缺口测试温度的人工神经网络模型。因此,它将为基于Fe-C-Mn系统的高性能焊接电极的高效开发和/或评估提供一对有效的工具,用于需求关键型应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Machine Learning to Regression Analysis of a Large SMA Weld Metal Database
A machine learning approach was used to perform a regression analysis of Evans’s shielded metal arc (SMA) weld metal (WM) database involving several groups of Fe-C-Mn high-strength steels. The objective of this investigation was to develop an expression for austenite-to-ferrite (Ar3) transformation temperature that also included the effects of principal and minor alloy elements (in wt-%) and weld cooling rate (in °C/s) and relate this expression with WM ultimate tensile strength (UTS). The Ar3 data from 257 records obtained from several selected sources were combined with Ar3 projections at extreme end points in Evans’s WM database. Subsequently, a cluster analysis was performed. The data in Evans’s database was filtered with the carbon equivalent number limited to 0.3 maximum, carbon content limited to 0.1 wt-% maximum, nitrogen content limited to 99 ppm (0.0099 wt-%) maximum, preassigned Ar3 values limited to 680°C minimum, and WM UTS limited to 710 MPa maximum. The results provided a good approximation to the expression for Ar3 transformation temperature in terms of elemental compositions and cooling rate. This allowed the Ar3 to correlate with WM UTS of Fe-C-Mn in at least four ways depending on the sign of correlation of the data clusters. The elemental combinations in the cluster with the highest negative correlation revealed highly predictable WM UTS. In particular, the new Ar3 expression helped to predict decreases observed in certain Ar3 experimental data on WMs with balanced Ti, B, Al, N, and O additions reported among 13 records with additional dilatometry results. This correlation between the new expression for the Ar3 temperature and UTS of Fe-C-Mn WM is expected to complement the Japan Welding Engineering Society artificial neural network model currently available to predict Charpy V-notch test temperature for 28 J absorbed energy based on WM chemical composition. It will thereby provide a pair of effective tools for efficient development and/or evaluation of high-performance welding electrodes based on an Fe-C-Mn system for demand-critical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Welding Journal
Welding Journal 工程技术-冶金工程
CiteScore
3.00
自引率
0.00%
发文量
23
审稿时长
3 months
期刊介绍: The Welding Journal has been published continually since 1922 — an unmatched link to all issues and advancements concerning metal fabrication and construction. Each month the Welding Journal delivers news of the welding and metal fabricating industry. Stay informed on the latest products, trends, technology and events via in-depth articles, full-color photos and illustrations, and timely, cost-saving advice. Also featured are articles and supplements on related activities, such as testing and inspection, maintenance and repair, design, training, personal safety, and brazing and soldering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信