Xiaoxue Fan, Cunfang Wang, Ming Cheng, Haitao Wei, Xingming Gao, Mengjia Ma, Xipeng Wang, Zhenghao Li
{"title":"乳制品中变质反应的标志和机制","authors":"Xiaoxue Fan, Cunfang Wang, Ming Cheng, Haitao Wei, Xingming Gao, Mengjia Ma, Xipeng Wang, Zhenghao Li","doi":"10.1007/s12393-023-09331-9","DOIUrl":null,"url":null,"abstract":"<div><h2>Abstract\n</h2><div><p>Dairy products, such as liquid, powdered, and fermented milk, provide an excellent source of nutrition and constitute part of a well-balanced diet. However, measures to prevent the deterioration of the quality of dairy products during thermal treatment and storage are lacking at present. Deterioration of milk quality is primarily related to reactions of oxidation, hydrolysis, and Maillard reaction. While multiple studies have focused on the factors influencing the deterioration of dairy products during processing and storage, systematic analysis of the underlying mechanisms is essential to improve our overall understanding of the process. This report presents a structured overview of the mechanisms and markers associated with deterioration reactions in marketed dairy products. The overall impacts of deterioration reactions on the quality and flavor of dairy products are additionally reviewed. Furthermore, potential markers of deterioration reactions and future development directions of the dairy industry are discussed, with a view to providing a reference for the quality and safety guarantee of dairy products.</p><h3>Graphical Abstract</h3>\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n </div></div>","PeriodicalId":565,"journal":{"name":"Food Engineering Reviews","volume":"15 2","pages":"230 - 241"},"PeriodicalIF":5.3000,"publicationDate":"2023-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Markers and Mechanisms of Deterioration Reactions in Dairy Products\",\"authors\":\"Xiaoxue Fan, Cunfang Wang, Ming Cheng, Haitao Wei, Xingming Gao, Mengjia Ma, Xipeng Wang, Zhenghao Li\",\"doi\":\"10.1007/s12393-023-09331-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h2>Abstract\\n</h2><div><p>Dairy products, such as liquid, powdered, and fermented milk, provide an excellent source of nutrition and constitute part of a well-balanced diet. However, measures to prevent the deterioration of the quality of dairy products during thermal treatment and storage are lacking at present. Deterioration of milk quality is primarily related to reactions of oxidation, hydrolysis, and Maillard reaction. While multiple studies have focused on the factors influencing the deterioration of dairy products during processing and storage, systematic analysis of the underlying mechanisms is essential to improve our overall understanding of the process. This report presents a structured overview of the mechanisms and markers associated with deterioration reactions in marketed dairy products. The overall impacts of deterioration reactions on the quality and flavor of dairy products are additionally reviewed. Furthermore, potential markers of deterioration reactions and future development directions of the dairy industry are discussed, with a view to providing a reference for the quality and safety guarantee of dairy products.</p><h3>Graphical Abstract</h3>\\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\\n </div></div>\",\"PeriodicalId\":565,\"journal\":{\"name\":\"Food Engineering Reviews\",\"volume\":\"15 2\",\"pages\":\"230 - 241\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2023-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Engineering Reviews\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12393-023-09331-9\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Engineering Reviews","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s12393-023-09331-9","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Markers and Mechanisms of Deterioration Reactions in Dairy Products
Abstract
Dairy products, such as liquid, powdered, and fermented milk, provide an excellent source of nutrition and constitute part of a well-balanced diet. However, measures to prevent the deterioration of the quality of dairy products during thermal treatment and storage are lacking at present. Deterioration of milk quality is primarily related to reactions of oxidation, hydrolysis, and Maillard reaction. While multiple studies have focused on the factors influencing the deterioration of dairy products during processing and storage, systematic analysis of the underlying mechanisms is essential to improve our overall understanding of the process. This report presents a structured overview of the mechanisms and markers associated with deterioration reactions in marketed dairy products. The overall impacts of deterioration reactions on the quality and flavor of dairy products are additionally reviewed. Furthermore, potential markers of deterioration reactions and future development directions of the dairy industry are discussed, with a view to providing a reference for the quality and safety guarantee of dairy products.
期刊介绍:
Food Engineering Reviews publishes articles encompassing all engineering aspects of today’s scientific food research. The journal focuses on both classic and modern food engineering topics, exploring essential factors such as the health, nutritional, and environmental aspects of food processing. Trends that will drive the discipline over time, from the lab to industrial implementation, are identified and discussed. The scope of topics addressed is broad, including transport phenomena in food processing; food process engineering; physical properties of foods; food nano-science and nano-engineering; food equipment design; food plant design; modeling food processes; microbial inactivation kinetics; preservation technologies; engineering aspects of food packaging; shelf-life, storage and distribution of foods; instrumentation, control and automation in food processing; food engineering, health and nutrition; energy and economic considerations in food engineering; sustainability; and food engineering education.