从平均场对策到随机框架下的最佳对策

IF 1.1 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Matt Barker
{"title":"从平均场对策到随机框架下的最佳对策","authors":"Matt Barker","doi":"10.3934/jdg.2019020","DOIUrl":null,"url":null,"abstract":"This paper builds on the work of Degond, Herty and Liu in [ 16 ] by considering \\begin{document}$ N $\\end{document} -player stochastic differential games. The control corresponding to a Nash equilibrium of such a game is approximated through model predictive control (MPC) techniques. In the case of a linear quadratic running-cost, considered here, the MPC method is shown to approximate the solution to the control problem by the best reply strategy (BRS) for the running cost. We then compare the MPC approach when taking the mean field limit with the popular mean field game (MFG) strategy. We find that our MPC approach reduces the two coupled PDEs to a single PDE, greatly increasing the simplicity and tractability of the original problem. We give two examples of applications of this approach to previous literature and conclude with future perspectives for this research.","PeriodicalId":42722,"journal":{"name":"Journal of Dynamics and Games","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"From mean field games to the best reply strategy in a stochastic framework\",\"authors\":\"Matt Barker\",\"doi\":\"10.3934/jdg.2019020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper builds on the work of Degond, Herty and Liu in [ 16 ] by considering \\\\begin{document}$ N $\\\\end{document} -player stochastic differential games. The control corresponding to a Nash equilibrium of such a game is approximated through model predictive control (MPC) techniques. In the case of a linear quadratic running-cost, considered here, the MPC method is shown to approximate the solution to the control problem by the best reply strategy (BRS) for the running cost. We then compare the MPC approach when taking the mean field limit with the popular mean field game (MFG) strategy. We find that our MPC approach reduces the two coupled PDEs to a single PDE, greatly increasing the simplicity and tractability of the original problem. We give two examples of applications of this approach to previous literature and conclude with future perspectives for this research.\",\"PeriodicalId\":42722,\"journal\":{\"name\":\"Journal of Dynamics and Games\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2019-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Dynamics and Games\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/jdg.2019020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamics and Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/jdg.2019020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 4

摘要

This paper builds on the work of Degond, Herty and Liu in [ 16 ] by considering \begin{document}$ N $\end{document} -player stochastic differential games. The control corresponding to a Nash equilibrium of such a game is approximated through model predictive control (MPC) techniques. In the case of a linear quadratic running-cost, considered here, the MPC method is shown to approximate the solution to the control problem by the best reply strategy (BRS) for the running cost. We then compare the MPC approach when taking the mean field limit with the popular mean field game (MFG) strategy. We find that our MPC approach reduces the two coupled PDEs to a single PDE, greatly increasing the simplicity and tractability of the original problem. We give two examples of applications of this approach to previous literature and conclude with future perspectives for this research.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From mean field games to the best reply strategy in a stochastic framework
This paper builds on the work of Degond, Herty and Liu in [ 16 ] by considering \begin{document}$ N $\end{document} -player stochastic differential games. The control corresponding to a Nash equilibrium of such a game is approximated through model predictive control (MPC) techniques. In the case of a linear quadratic running-cost, considered here, the MPC method is shown to approximate the solution to the control problem by the best reply strategy (BRS) for the running cost. We then compare the MPC approach when taking the mean field limit with the popular mean field game (MFG) strategy. We find that our MPC approach reduces the two coupled PDEs to a single PDE, greatly increasing the simplicity and tractability of the original problem. We give two examples of applications of this approach to previous literature and conclude with future perspectives for this research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Dynamics and Games
Journal of Dynamics and Games MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
2.00
自引率
0.00%
发文量
26
期刊介绍: The Journal of Dynamics and Games (JDG) is a pure and applied mathematical journal that publishes high quality peer-review and expository papers in all research areas of expertise of its editors. The main focus of JDG is in the interface of Dynamical Systems and Game Theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信