哈密顿Carleman近似与共点轨道的密度性质

IF 0.8 4区 数学 Q2 MATHEMATICS
F. Deng, E. F. Wold
{"title":"哈密顿Carleman近似与共点轨道的密度性质","authors":"F. Deng, E. F. Wold","doi":"10.4310/arkiv.2022.v60.n1.a2","DOIUrl":null,"url":null,"abstract":"For a complex Lie group $G$ with a real form $G_0\\subset G$, we prove that any Hamiltionian automorphism $\\phi$ of a coadjoint orbit $\\mathcal O_0$ of $G_0$ whose connected components are simply connected, may be approximated by holomorphic $\\mathcal O_0$-invariant symplectic automorphism of the corresponding coadjoint orbit of $G$ in the sense of Carleman, provided that $\\mathcal O$ is closed. In the course of the proof, we establish the Hamiltonian density property for closed coadjoint orbits of all complex Lie groups.","PeriodicalId":55569,"journal":{"name":"Arkiv for Matematik","volume":"1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2019-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hamiltonian Carleman approximation and the density property for coadjoint orbits\",\"authors\":\"F. Deng, E. F. Wold\",\"doi\":\"10.4310/arkiv.2022.v60.n1.a2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a complex Lie group $G$ with a real form $G_0\\\\subset G$, we prove that any Hamiltionian automorphism $\\\\phi$ of a coadjoint orbit $\\\\mathcal O_0$ of $G_0$ whose connected components are simply connected, may be approximated by holomorphic $\\\\mathcal O_0$-invariant symplectic automorphism of the corresponding coadjoint orbit of $G$ in the sense of Carleman, provided that $\\\\mathcal O$ is closed. In the course of the proof, we establish the Hamiltonian density property for closed coadjoint orbits of all complex Lie groups.\",\"PeriodicalId\":55569,\"journal\":{\"name\":\"Arkiv for Matematik\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2019-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arkiv for Matematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/arkiv.2022.v60.n1.a2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arkiv for Matematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/arkiv.2022.v60.n1.a2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

对于具有实数形式$G_0\子集$G$的复李群$G$,证明了$G_0$的共轭轨道$\mathcal O_0$的任意哈密尔自同构$\ φ $,其连通分量是单连通的,可以用$G$对应的共轭轨道$\mathcal O_0$在Carleman意义上的全纯$\mathcal O_0$逼近,只要$\mathcal O$是闭的。在证明过程中,我们建立了所有复李群的闭伴轨道的哈密顿密度性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hamiltonian Carleman approximation and the density property for coadjoint orbits
For a complex Lie group $G$ with a real form $G_0\subset G$, we prove that any Hamiltionian automorphism $\phi$ of a coadjoint orbit $\mathcal O_0$ of $G_0$ whose connected components are simply connected, may be approximated by holomorphic $\mathcal O_0$-invariant symplectic automorphism of the corresponding coadjoint orbit of $G$ in the sense of Carleman, provided that $\mathcal O$ is closed. In the course of the proof, we establish the Hamiltonian density property for closed coadjoint orbits of all complex Lie groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Arkiv for Matematik
Arkiv for Matematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Publishing research papers, of short to moderate length, in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信