哈密顿Carleman近似与共点轨道的密度性质

Pub Date : 2019-11-08 DOI:10.4310/arkiv.2022.v60.n1.a2
F. Deng, E. F. Wold
{"title":"哈密顿Carleman近似与共点轨道的密度性质","authors":"F. Deng, E. F. Wold","doi":"10.4310/arkiv.2022.v60.n1.a2","DOIUrl":null,"url":null,"abstract":"For a complex Lie group $G$ with a real form $G_0\\subset G$, we prove that any Hamiltionian automorphism $\\phi$ of a coadjoint orbit $\\mathcal O_0$ of $G_0$ whose connected components are simply connected, may be approximated by holomorphic $\\mathcal O_0$-invariant symplectic automorphism of the corresponding coadjoint orbit of $G$ in the sense of Carleman, provided that $\\mathcal O$ is closed. In the course of the proof, we establish the Hamiltonian density property for closed coadjoint orbits of all complex Lie groups.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hamiltonian Carleman approximation and the density property for coadjoint orbits\",\"authors\":\"F. Deng, E. F. Wold\",\"doi\":\"10.4310/arkiv.2022.v60.n1.a2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a complex Lie group $G$ with a real form $G_0\\\\subset G$, we prove that any Hamiltionian automorphism $\\\\phi$ of a coadjoint orbit $\\\\mathcal O_0$ of $G_0$ whose connected components are simply connected, may be approximated by holomorphic $\\\\mathcal O_0$-invariant symplectic automorphism of the corresponding coadjoint orbit of $G$ in the sense of Carleman, provided that $\\\\mathcal O$ is closed. In the course of the proof, we establish the Hamiltonian density property for closed coadjoint orbits of all complex Lie groups.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/arkiv.2022.v60.n1.a2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/arkiv.2022.v60.n1.a2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

对于具有实数形式$G_0\子集$G$的复李群$G$,证明了$G_0$的共轭轨道$\mathcal O_0$的任意哈密尔自同构$\ φ $,其连通分量是单连通的,可以用$G$对应的共轭轨道$\mathcal O_0$在Carleman意义上的全纯$\mathcal O_0$逼近,只要$\mathcal O$是闭的。在证明过程中,我们建立了所有复李群的闭伴轨道的哈密顿密度性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Hamiltonian Carleman approximation and the density property for coadjoint orbits
For a complex Lie group $G$ with a real form $G_0\subset G$, we prove that any Hamiltionian automorphism $\phi$ of a coadjoint orbit $\mathcal O_0$ of $G_0$ whose connected components are simply connected, may be approximated by holomorphic $\mathcal O_0$-invariant symplectic automorphism of the corresponding coadjoint orbit of $G$ in the sense of Carleman, provided that $\mathcal O$ is closed. In the course of the proof, we establish the Hamiltonian density property for closed coadjoint orbits of all complex Lie groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信