Mahesh M. Dhakate, Aditya Venkatraman and Devang V. Khakhar*,
{"title":"气流磨中单个颗粒的破碎","authors":"Mahesh M. Dhakate, Aditya Venkatraman and Devang V. Khakhar*, ","doi":"10.1021/acsengineeringau.3c00004","DOIUrl":null,"url":null,"abstract":"<p >An experimental study of the impact breakage of a single tapioca grain using an air jet mill is carried out. High-velocity jets at the circumference of the cylindrical grinding chamber propel the grain tangentially, resulting in numerous collisions with the cylinder walls prior to breakage. Videography and image analysis are used to obtain the trajectory of the particle and the sizes of the fragments. Each experiment is repeated 25 times at three different grinding jet pressures (1, 1.5, and 2 bar). The average collision rate and the average breakage times are nearly constant for the higher pressures at 1000 1/s and 0.18 s, respectively. The size distribution at the end of the experiment, obtained using a laser particle size analyzer, is trimodal. The probability of first breakage versus the cumulative specific kinetic energy of impacts is shown to follow the Vogel–Peukert equation (<i>Powder Technology</i> <b>2003</b>, <i>129</i>, 101–110).</p>","PeriodicalId":29804,"journal":{"name":"ACS Engineering Au","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsengineeringau.3c00004","citationCount":"1","resultStr":"{\"title\":\"Breakage of a Single Particle in an Air Jet Mill\",\"authors\":\"Mahesh M. Dhakate, Aditya Venkatraman and Devang V. Khakhar*, \",\"doi\":\"10.1021/acsengineeringau.3c00004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >An experimental study of the impact breakage of a single tapioca grain using an air jet mill is carried out. High-velocity jets at the circumference of the cylindrical grinding chamber propel the grain tangentially, resulting in numerous collisions with the cylinder walls prior to breakage. Videography and image analysis are used to obtain the trajectory of the particle and the sizes of the fragments. Each experiment is repeated 25 times at three different grinding jet pressures (1, 1.5, and 2 bar). The average collision rate and the average breakage times are nearly constant for the higher pressures at 1000 1/s and 0.18 s, respectively. The size distribution at the end of the experiment, obtained using a laser particle size analyzer, is trimodal. The probability of first breakage versus the cumulative specific kinetic energy of impacts is shown to follow the Vogel–Peukert equation (<i>Powder Technology</i> <b>2003</b>, <i>129</i>, 101–110).</p>\",\"PeriodicalId\":29804,\"journal\":{\"name\":\"ACS Engineering Au\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsengineeringau.3c00004\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Engineering Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsengineeringau.3c00004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Engineering Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsengineeringau.3c00004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
An experimental study of the impact breakage of a single tapioca grain using an air jet mill is carried out. High-velocity jets at the circumference of the cylindrical grinding chamber propel the grain tangentially, resulting in numerous collisions with the cylinder walls prior to breakage. Videography and image analysis are used to obtain the trajectory of the particle and the sizes of the fragments. Each experiment is repeated 25 times at three different grinding jet pressures (1, 1.5, and 2 bar). The average collision rate and the average breakage times are nearly constant for the higher pressures at 1000 1/s and 0.18 s, respectively. The size distribution at the end of the experiment, obtained using a laser particle size analyzer, is trimodal. The probability of first breakage versus the cumulative specific kinetic energy of impacts is shown to follow the Vogel–Peukert equation (Powder Technology2003, 129, 101–110).
期刊介绍:
)ACS Engineering Au is an open access journal that reports significant advances in chemical engineering applied chemistry and energy covering fundamentals processes and products. The journal's broad scope includes experimental theoretical mathematical computational chemical and physical research from academic and industrial settings. Short letters comprehensive articles reviews and perspectives are welcome on topics that include:Fundamental research in such areas as thermodynamics transport phenomena (flow mixing mass & heat transfer) chemical reaction kinetics and engineering catalysis separations interfacial phenomena and materialsProcess design development and intensification (e.g. process technologies for chemicals and materials synthesis and design methods process intensification multiphase reactors scale-up systems analysis process control data correlation schemes modeling machine learning Artificial Intelligence)Product research and development involving chemical and engineering aspects (e.g. catalysts plastics elastomers fibers adhesives coatings paper membranes lubricants ceramics aerosols fluidic devices intensified process equipment)Energy and fuels (e.g. pre-treatment processing and utilization of renewable energy resources; processing and utilization of fuels; properties and structure or molecular composition of both raw fuels and refined products; fuel cells hydrogen batteries; photochemical fuel and energy production; decarbonization; electrification; microwave; cavitation)Measurement techniques computational models and data on thermo-physical thermodynamic and transport properties of materials and phase equilibrium behaviorNew methods models and tools (e.g. real-time data analytics multi-scale models physics informed machine learning models machine learning enhanced physics-based models soft sensors high-performance computing)