Chong Wang, Ying Shi, Wen Gu, Chao Wang, Yongjun Xu, Li Li, Lixia Zhang, Shaoping Zhang, Hong Zhi, Hongjie Ruan, Jian Kong, Lian Duan, Song Tang
{"title":"硼对三氯乙酸肝毒性和氧化应激的保护作用","authors":"Chong Wang, Ying Shi, Wen Gu, Chao Wang, Yongjun Xu, Li Li, Lixia Zhang, Shaoping Zhang, Hong Zhi, Hongjie Ruan, Jian Kong, Lian Duan, Song Tang","doi":"10.1186/s12302-023-00775-8","DOIUrl":null,"url":null,"abstract":"<div><p>We conducted a comprehensive investigation into the protective roles of boron (B) against trichloroacetic acid (TCA)-induced hepatotoxicity by assessing TCA exposure in vivo and exploring the potential mechanisms by which B protects against TCA-induced hepatotoxicity in vitro. For the in vivo study, we evaluated TCA-induced hepatotoxicity in adult male B6C3F1 mice exposed to 25, 50, 125, and 500 mg/kg/day of TCA, respectively, for 21 days. We found that the mice’s liver weight was significantly increased, and that there were changes in hepatic histopathology, particularly in mice treated with the highest dosage (500 mg/kg/day). TCA also increased the hepatic oxidoreductase activity of medium-chain and long-chain acyl-coenzyme A (CoA), which are biomarkers of peroxisome proliferation, in a dose-dependent manner. Subsequently, we established a TCA-induced HepG2 cell model of oxidative damage to estimate the cytotoxicity and determine the positive effects of B administration in vitro. We found that B administration significantly reduced oxidative stress by attenuating the production of TCA-induced reactive oxygen species and malondialdehyde. B also significantly downregulated the concentrations of certain cytokines, including interleukin (IL)-6, IL-8, and transforming growth factor-beta, which are predominantly associated with the p38 mitogen-activated protein kinase (MAPK) signaling pathway. In addition, B significantly upregulated phospho-p38 levels and downregulated Bax and p21 levels in the cytoplasm and downregulated p38 and p21 levels in the nucleus. Taken together, our findings suggest that the protective role of B against TCA-induced hepatotoxicity primarily involves alleviation of oxidative damage and cell apoptosis caused by TCA and might be mediated via the p38 MAPK pathway.</p></div>","PeriodicalId":54293,"journal":{"name":"Environmental Sciences Europe","volume":"35 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://enveurope.springeropen.com/counter/pdf/10.1186/s12302-023-00775-8","citationCount":"0","resultStr":"{\"title\":\"Protective role of boron on hepatotoxicity and oxidative stress induced by trichloroacetic acid\",\"authors\":\"Chong Wang, Ying Shi, Wen Gu, Chao Wang, Yongjun Xu, Li Li, Lixia Zhang, Shaoping Zhang, Hong Zhi, Hongjie Ruan, Jian Kong, Lian Duan, Song Tang\",\"doi\":\"10.1186/s12302-023-00775-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We conducted a comprehensive investigation into the protective roles of boron (B) against trichloroacetic acid (TCA)-induced hepatotoxicity by assessing TCA exposure in vivo and exploring the potential mechanisms by which B protects against TCA-induced hepatotoxicity in vitro. For the in vivo study, we evaluated TCA-induced hepatotoxicity in adult male B6C3F1 mice exposed to 25, 50, 125, and 500 mg/kg/day of TCA, respectively, for 21 days. We found that the mice’s liver weight was significantly increased, and that there were changes in hepatic histopathology, particularly in mice treated with the highest dosage (500 mg/kg/day). TCA also increased the hepatic oxidoreductase activity of medium-chain and long-chain acyl-coenzyme A (CoA), which are biomarkers of peroxisome proliferation, in a dose-dependent manner. Subsequently, we established a TCA-induced HepG2 cell model of oxidative damage to estimate the cytotoxicity and determine the positive effects of B administration in vitro. We found that B administration significantly reduced oxidative stress by attenuating the production of TCA-induced reactive oxygen species and malondialdehyde. B also significantly downregulated the concentrations of certain cytokines, including interleukin (IL)-6, IL-8, and transforming growth factor-beta, which are predominantly associated with the p38 mitogen-activated protein kinase (MAPK) signaling pathway. In addition, B significantly upregulated phospho-p38 levels and downregulated Bax and p21 levels in the cytoplasm and downregulated p38 and p21 levels in the nucleus. Taken together, our findings suggest that the protective role of B against TCA-induced hepatotoxicity primarily involves alleviation of oxidative damage and cell apoptosis caused by TCA and might be mediated via the p38 MAPK pathway.</p></div>\",\"PeriodicalId\":54293,\"journal\":{\"name\":\"Environmental Sciences Europe\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2023-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://enveurope.springeropen.com/counter/pdf/10.1186/s12302-023-00775-8\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Sciences Europe\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s12302-023-00775-8\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Sciences Europe","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1186/s12302-023-00775-8","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
Protective role of boron on hepatotoxicity and oxidative stress induced by trichloroacetic acid
We conducted a comprehensive investigation into the protective roles of boron (B) against trichloroacetic acid (TCA)-induced hepatotoxicity by assessing TCA exposure in vivo and exploring the potential mechanisms by which B protects against TCA-induced hepatotoxicity in vitro. For the in vivo study, we evaluated TCA-induced hepatotoxicity in adult male B6C3F1 mice exposed to 25, 50, 125, and 500 mg/kg/day of TCA, respectively, for 21 days. We found that the mice’s liver weight was significantly increased, and that there were changes in hepatic histopathology, particularly in mice treated with the highest dosage (500 mg/kg/day). TCA also increased the hepatic oxidoreductase activity of medium-chain and long-chain acyl-coenzyme A (CoA), which are biomarkers of peroxisome proliferation, in a dose-dependent manner. Subsequently, we established a TCA-induced HepG2 cell model of oxidative damage to estimate the cytotoxicity and determine the positive effects of B administration in vitro. We found that B administration significantly reduced oxidative stress by attenuating the production of TCA-induced reactive oxygen species and malondialdehyde. B also significantly downregulated the concentrations of certain cytokines, including interleukin (IL)-6, IL-8, and transforming growth factor-beta, which are predominantly associated with the p38 mitogen-activated protein kinase (MAPK) signaling pathway. In addition, B significantly upregulated phospho-p38 levels and downregulated Bax and p21 levels in the cytoplasm and downregulated p38 and p21 levels in the nucleus. Taken together, our findings suggest that the protective role of B against TCA-induced hepatotoxicity primarily involves alleviation of oxidative damage and cell apoptosis caused by TCA and might be mediated via the p38 MAPK pathway.
期刊介绍:
ESEU is an international journal, focusing primarily on Europe, with a broad scope covering all aspects of environmental sciences, including the main topic regulation.
ESEU will discuss the entanglement between environmental sciences and regulation because, in recent years, there have been misunderstandings and even disagreement between stakeholders in these two areas. ESEU will help to improve the comprehension of issues between environmental sciences and regulation.
ESEU will be an outlet from the German-speaking (DACH) countries to Europe and an inlet from Europe to the DACH countries regarding environmental sciences and regulation.
Moreover, ESEU will facilitate the exchange of ideas and interaction between Europe and the DACH countries regarding environmental regulatory issues.
Although Europe is at the center of ESEU, the journal will not exclude the rest of the world, because regulatory issues pertaining to environmental sciences can be fully seen only from a global perspective.