Y. Ge, Shuangshuang Shi, Lingen Chen, Difeng Zhang, H. Feng
{"title":"不可逆双循环的功率密度分析与多目标优化","authors":"Y. Ge, Shuangshuang Shi, Lingen Chen, Difeng Zhang, H. Feng","doi":"10.1515/jnet-2021-0083","DOIUrl":null,"url":null,"abstract":"Abstract Considering the various irreversibility conditions caused by heat transfer and working processes in a dual cycle, the power density performance is optimized by applying finite-time thermodynamics theory, and multi-objective optimization is performed by using NSGA-II. The effects of cut-off ratio, maximum cycle temperature ratio, and various losses by heat transfer and working processes on the relationships between the power density and the compression ratio and between the power density and the thermal efficiency are analyzed. The thermal efficiency and engine size obtained under the conditions of maximum power output and power density are discussed. The results show that for a dual cycle, the heat engine has a smaller size and higher thermal efficiency under the condition of maximum power density. The cycle compression ratio and cut-off ratio are selected as decision variables, and the dimensionless power output, thermal efficiency, dimensionless ecological function, and dimensionless power density are selected as objective functions. Multi-objective optimization is performed with different objective combinations. The deviation indexes under the LINMAP, TOPSIS, and Shannon entropy approaches are discussed, and the number of generations when the genetic algorithm reaches convergence are obtained. The results show that the genetic algorithm converges at the 341st generation for the quadru-objective optimization, at the 488th generation for the tri-objective optimization, and at the 399th generation for the bi-objective optimization. When the bi-objective optimization is performed with dimensionless power output and dimensionless ecological function as the objective functions, the deviation index obtained based on the LINMAP approach is 0.1400, which is better than those obtained for other single- and multi-objective optimizations.","PeriodicalId":16428,"journal":{"name":"Journal of Non-Equilibrium Thermodynamics","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"Power Density Analysis and Multi-Objective Optimization for an Irreversible Dual Cycle\",\"authors\":\"Y. Ge, Shuangshuang Shi, Lingen Chen, Difeng Zhang, H. Feng\",\"doi\":\"10.1515/jnet-2021-0083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Considering the various irreversibility conditions caused by heat transfer and working processes in a dual cycle, the power density performance is optimized by applying finite-time thermodynamics theory, and multi-objective optimization is performed by using NSGA-II. The effects of cut-off ratio, maximum cycle temperature ratio, and various losses by heat transfer and working processes on the relationships between the power density and the compression ratio and between the power density and the thermal efficiency are analyzed. The thermal efficiency and engine size obtained under the conditions of maximum power output and power density are discussed. The results show that for a dual cycle, the heat engine has a smaller size and higher thermal efficiency under the condition of maximum power density. The cycle compression ratio and cut-off ratio are selected as decision variables, and the dimensionless power output, thermal efficiency, dimensionless ecological function, and dimensionless power density are selected as objective functions. Multi-objective optimization is performed with different objective combinations. The deviation indexes under the LINMAP, TOPSIS, and Shannon entropy approaches are discussed, and the number of generations when the genetic algorithm reaches convergence are obtained. The results show that the genetic algorithm converges at the 341st generation for the quadru-objective optimization, at the 488th generation for the tri-objective optimization, and at the 399th generation for the bi-objective optimization. When the bi-objective optimization is performed with dimensionless power output and dimensionless ecological function as the objective functions, the deviation index obtained based on the LINMAP approach is 0.1400, which is better than those obtained for other single- and multi-objective optimizations.\",\"PeriodicalId\":16428,\"journal\":{\"name\":\"Journal of Non-Equilibrium Thermodynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2022-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Non-Equilibrium Thermodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/jnet-2021-0083\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Equilibrium Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/jnet-2021-0083","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Power Density Analysis and Multi-Objective Optimization for an Irreversible Dual Cycle
Abstract Considering the various irreversibility conditions caused by heat transfer and working processes in a dual cycle, the power density performance is optimized by applying finite-time thermodynamics theory, and multi-objective optimization is performed by using NSGA-II. The effects of cut-off ratio, maximum cycle temperature ratio, and various losses by heat transfer and working processes on the relationships between the power density and the compression ratio and between the power density and the thermal efficiency are analyzed. The thermal efficiency and engine size obtained under the conditions of maximum power output and power density are discussed. The results show that for a dual cycle, the heat engine has a smaller size and higher thermal efficiency under the condition of maximum power density. The cycle compression ratio and cut-off ratio are selected as decision variables, and the dimensionless power output, thermal efficiency, dimensionless ecological function, and dimensionless power density are selected as objective functions. Multi-objective optimization is performed with different objective combinations. The deviation indexes under the LINMAP, TOPSIS, and Shannon entropy approaches are discussed, and the number of generations when the genetic algorithm reaches convergence are obtained. The results show that the genetic algorithm converges at the 341st generation for the quadru-objective optimization, at the 488th generation for the tri-objective optimization, and at the 399th generation for the bi-objective optimization. When the bi-objective optimization is performed with dimensionless power output and dimensionless ecological function as the objective functions, the deviation index obtained based on the LINMAP approach is 0.1400, which is better than those obtained for other single- and multi-objective optimizations.
期刊介绍:
The Journal of Non-Equilibrium Thermodynamics serves as an international publication organ for new ideas, insights and results on non-equilibrium phenomena in science, engineering and related natural systems. The central aim of the journal is to provide a bridge between science and engineering and to promote scientific exchange on a) newly observed non-equilibrium phenomena, b) analytic or numeric modeling for their interpretation, c) vanguard methods to describe non-equilibrium phenomena.
Contributions should – among others – present novel approaches to analyzing, modeling and optimizing processes of engineering relevance such as transport processes of mass, momentum and energy, separation of fluid phases, reproduction of living cells, or energy conversion. The journal is particularly interested in contributions which add to the basic understanding of non-equilibrium phenomena in science and engineering, with systems of interest ranging from the macro- to the nano-level.
The Journal of Non-Equilibrium Thermodynamics has recently expanded its scope to place new emphasis on theoretical and experimental investigations of non-equilibrium phenomena in thermophysical, chemical, biochemical and abstract model systems of engineering relevance. We are therefore pleased to invite submissions which present newly observed non-equilibrium phenomena, analytic or fuzzy models for their interpretation, or new methods for their description.