{"title":"具有状态相关和非局部碰撞的阻尼哈密顿动力学的指数遍历性","authors":"J. Bao, Jian Wang","doi":"10.3150/22-bej1548","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the exponential ergodicity in a Wasserstein-type distance for a damping Hamiltonian dynamics with state-dependent and non-local collisions, which indeed is a special case of piecewise deterministic Markov processes while is very popular in numerous modelling situations including stochastic algorithms. The approach adopted in this work is based on a combination of the refined basic coupling and the refined reflection coupling for non-local operators. In a certain sense, the main result developed in the present paper is a continuation of the counterpart in \\cite{BW2022} on exponential ergodicity of stochastic Hamiltonian systems with L\\'evy noises and a complement of \\cite{BA} upon exponential ergodicity for Andersen dynamics with constant jump rate functions.","PeriodicalId":55387,"journal":{"name":"Bernoulli","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exponential ergodicity for damping Hamiltonian dynamics with state-dependent and non-local collisions\",\"authors\":\"J. Bao, Jian Wang\",\"doi\":\"10.3150/22-bej1548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the exponential ergodicity in a Wasserstein-type distance for a damping Hamiltonian dynamics with state-dependent and non-local collisions, which indeed is a special case of piecewise deterministic Markov processes while is very popular in numerous modelling situations including stochastic algorithms. The approach adopted in this work is based on a combination of the refined basic coupling and the refined reflection coupling for non-local operators. In a certain sense, the main result developed in the present paper is a continuation of the counterpart in \\\\cite{BW2022} on exponential ergodicity of stochastic Hamiltonian systems with L\\\\'evy noises and a complement of \\\\cite{BA} upon exponential ergodicity for Andersen dynamics with constant jump rate functions.\",\"PeriodicalId\":55387,\"journal\":{\"name\":\"Bernoulli\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bernoulli\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3150/22-bej1548\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bernoulli","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3150/22-bej1548","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Exponential ergodicity for damping Hamiltonian dynamics with state-dependent and non-local collisions
In this paper, we investigate the exponential ergodicity in a Wasserstein-type distance for a damping Hamiltonian dynamics with state-dependent and non-local collisions, which indeed is a special case of piecewise deterministic Markov processes while is very popular in numerous modelling situations including stochastic algorithms. The approach adopted in this work is based on a combination of the refined basic coupling and the refined reflection coupling for non-local operators. In a certain sense, the main result developed in the present paper is a continuation of the counterpart in \cite{BW2022} on exponential ergodicity of stochastic Hamiltonian systems with L\'evy noises and a complement of \cite{BA} upon exponential ergodicity for Andersen dynamics with constant jump rate functions.
期刊介绍:
BERNOULLI is the journal of the Bernoulli Society for Mathematical Statistics and Probability, issued four times per year. The journal provides a comprehensive account of important developments in the fields of statistics and probability, offering an international forum for both theoretical and applied work.
BERNOULLI will publish:
Papers containing original and significant research contributions: with background, mathematical derivation and discussion of the results in suitable detail and, where appropriate, with discussion of interesting applications in relation to the methodology proposed.
Papers of the following two types will also be considered for publication, provided they are judged to enhance the dissemination of research:
Review papers which provide an integrated critical survey of some area of probability and statistics and discuss important recent developments.
Scholarly written papers on some historical significant aspect of statistics and probability.