{"title":"基于Hermite基函数的期权价格非参数估计","authors":"Carlo Marinelli, Stefano d’Addona","doi":"10.1007/s10436-023-00431-4","DOIUrl":null,"url":null,"abstract":"<div><p>We consider approximate pricing formulas for European options based on approximating the logarithmic return’s density of the underlying by a linear combination of rescaled Hermite polynomials. The resulting models, that can be seen as perturbations of the classical Black-Scholes one, are nonpararametric in the sense that the distribution of logarithmic returns at fixed times to maturity is only assumed to have a square-integrable density. We extensively investigate the empirical performance, defined in terms of out-of-sample relative pricing error, of this class of approximating models, depending on their order (that is, roughly speaking, the degree of the polynomial expansion) as well as on several ways to calibrate them to observed data. Empirical results suggest that such approximate pricing formulas, when compared with simple nonparametric estimates based on interpolation and extrapolation on the implied volatility curve, perform reasonably well only for options with strike price not too far apart from the strike prices of the observed sample.</p></div>","PeriodicalId":45289,"journal":{"name":"Annals of Finance","volume":"19 4","pages":"477 - 522"},"PeriodicalIF":0.8000,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10436-023-00431-4.pdf","citationCount":"1","resultStr":"{\"title\":\"Nonparametric estimates of option prices via Hermite basis functions\",\"authors\":\"Carlo Marinelli, Stefano d’Addona\",\"doi\":\"10.1007/s10436-023-00431-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider approximate pricing formulas for European options based on approximating the logarithmic return’s density of the underlying by a linear combination of rescaled Hermite polynomials. The resulting models, that can be seen as perturbations of the classical Black-Scholes one, are nonpararametric in the sense that the distribution of logarithmic returns at fixed times to maturity is only assumed to have a square-integrable density. We extensively investigate the empirical performance, defined in terms of out-of-sample relative pricing error, of this class of approximating models, depending on their order (that is, roughly speaking, the degree of the polynomial expansion) as well as on several ways to calibrate them to observed data. Empirical results suggest that such approximate pricing formulas, when compared with simple nonparametric estimates based on interpolation and extrapolation on the implied volatility curve, perform reasonably well only for options with strike price not too far apart from the strike prices of the observed sample.</p></div>\",\"PeriodicalId\":45289,\"journal\":{\"name\":\"Annals of Finance\",\"volume\":\"19 4\",\"pages\":\"477 - 522\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10436-023-00431-4.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10436-023-00431-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Finance","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s10436-023-00431-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
Nonparametric estimates of option prices via Hermite basis functions
We consider approximate pricing formulas for European options based on approximating the logarithmic return’s density of the underlying by a linear combination of rescaled Hermite polynomials. The resulting models, that can be seen as perturbations of the classical Black-Scholes one, are nonpararametric in the sense that the distribution of logarithmic returns at fixed times to maturity is only assumed to have a square-integrable density. We extensively investigate the empirical performance, defined in terms of out-of-sample relative pricing error, of this class of approximating models, depending on their order (that is, roughly speaking, the degree of the polynomial expansion) as well as on several ways to calibrate them to observed data. Empirical results suggest that such approximate pricing formulas, when compared with simple nonparametric estimates based on interpolation and extrapolation on the implied volatility curve, perform reasonably well only for options with strike price not too far apart from the strike prices of the observed sample.
期刊介绍:
Annals of Finance provides an outlet for original research in all areas of finance and its applications to other disciplines having a clear and substantive link to the general theme of finance. In particular, innovative research papers of moderate length of the highest quality in all scientific areas that are motivated by the analysis of financial problems will be considered. Annals of Finance''s scope encompasses - but is not limited to - the following areas: accounting and finance, asset pricing, banking and finance, capital markets and finance, computational finance, corporate finance, derivatives, dynamical and chaotic systems in finance, economics and finance, empirical finance, experimental finance, finance and the theory of the firm, financial econometrics, financial institutions, mathematical finance, money and finance, portfolio analysis, regulation, stochastic analysis and finance, stock market analysis, systemic risk and financial stability. Annals of Finance also publishes special issues on any topic in finance and its applications of current interest. A small section, entitled finance notes, will be devoted solely to publishing short articles – up to ten pages in length, of substantial interest in finance. Officially cited as: Ann Finance