Lian See Tan , Kenichi Kubota , Jully Tan , Peck Loo Kiew , Takasei Okano
{"title":"数字鸿沟下的学习第一原则理论——虚拟合作对学习动机的影响","authors":"Lian See Tan , Kenichi Kubota , Jully Tan , Peck Loo Kiew , Takasei Okano","doi":"10.1016/j.ece.2022.04.003","DOIUrl":null,"url":null,"abstract":"<div><p><span>Studies revealed that existing lockdowns<span> due to COVID-19 across developing countries resulted in education access inequalities and challenges. Closure of schools and higher education institutions have forced educators to deliver courses and assessments distantly as an immediate countermeasure against threats on the academic progression of students. Specifically, </span></span>students marginalized<span> by digital divides were found to have less satisfaction in learning experiences<span> under this emergency online learning method. For students with science and engineering background, it is a challenge to learn first principles theories in the online environment which could affect their learning motivation level. This paper presents the implementation of online cooperative learning in the course Material and Energy Balance which covered the fundamental principles of Chemical Engineering. The impact of virtual cooperative learning approach to reduce the loss of motivation due to digital divide was investigated. Firstly, it was found that most of the students, from different backgrounds of digital access, experienced a drop in motivation at the start of emergency online learning. Secondly, when virtual cooperative learning was implemented, an increase in students’ motivation at both sides of the digital divide was observed. The implications concerning provisions to design an all-inclusive online learning environment are also presented. We found that the incorporation of cooperative learning approach could contribute towards alleviating the drop in motivation, especially for the digitally disadvantaged students. We hope that the findings from this study could compel instructors or education practitioners to rethink and redesign the online teaching and learning activities to enable a more inclusive emergency online learning environment for digitally disadvantaged students.</span></span></p></div>","PeriodicalId":48509,"journal":{"name":"Education for Chemical Engineers","volume":"40 ","pages":"Pages 29-36"},"PeriodicalIF":3.5000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Learning first principles theories under digital divide: Effects of virtual cooperative approach on the motivation of learning\",\"authors\":\"Lian See Tan , Kenichi Kubota , Jully Tan , Peck Loo Kiew , Takasei Okano\",\"doi\":\"10.1016/j.ece.2022.04.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Studies revealed that existing lockdowns<span> due to COVID-19 across developing countries resulted in education access inequalities and challenges. Closure of schools and higher education institutions have forced educators to deliver courses and assessments distantly as an immediate countermeasure against threats on the academic progression of students. Specifically, </span></span>students marginalized<span> by digital divides were found to have less satisfaction in learning experiences<span> under this emergency online learning method. For students with science and engineering background, it is a challenge to learn first principles theories in the online environment which could affect their learning motivation level. This paper presents the implementation of online cooperative learning in the course Material and Energy Balance which covered the fundamental principles of Chemical Engineering. The impact of virtual cooperative learning approach to reduce the loss of motivation due to digital divide was investigated. Firstly, it was found that most of the students, from different backgrounds of digital access, experienced a drop in motivation at the start of emergency online learning. Secondly, when virtual cooperative learning was implemented, an increase in students’ motivation at both sides of the digital divide was observed. The implications concerning provisions to design an all-inclusive online learning environment are also presented. We found that the incorporation of cooperative learning approach could contribute towards alleviating the drop in motivation, especially for the digitally disadvantaged students. We hope that the findings from this study could compel instructors or education practitioners to rethink and redesign the online teaching and learning activities to enable a more inclusive emergency online learning environment for digitally disadvantaged students.</span></span></p></div>\",\"PeriodicalId\":48509,\"journal\":{\"name\":\"Education for Chemical Engineers\",\"volume\":\"40 \",\"pages\":\"Pages 29-36\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Education for Chemical Engineers\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1749772822000148\",\"RegionNum\":2,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION, SCIENTIFIC DISCIPLINES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Education for Chemical Engineers","FirstCategoryId":"95","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1749772822000148","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
Learning first principles theories under digital divide: Effects of virtual cooperative approach on the motivation of learning
Studies revealed that existing lockdowns due to COVID-19 across developing countries resulted in education access inequalities and challenges. Closure of schools and higher education institutions have forced educators to deliver courses and assessments distantly as an immediate countermeasure against threats on the academic progression of students. Specifically, students marginalized by digital divides were found to have less satisfaction in learning experiences under this emergency online learning method. For students with science and engineering background, it is a challenge to learn first principles theories in the online environment which could affect their learning motivation level. This paper presents the implementation of online cooperative learning in the course Material and Energy Balance which covered the fundamental principles of Chemical Engineering. The impact of virtual cooperative learning approach to reduce the loss of motivation due to digital divide was investigated. Firstly, it was found that most of the students, from different backgrounds of digital access, experienced a drop in motivation at the start of emergency online learning. Secondly, when virtual cooperative learning was implemented, an increase in students’ motivation at both sides of the digital divide was observed. The implications concerning provisions to design an all-inclusive online learning environment are also presented. We found that the incorporation of cooperative learning approach could contribute towards alleviating the drop in motivation, especially for the digitally disadvantaged students. We hope that the findings from this study could compel instructors or education practitioners to rethink and redesign the online teaching and learning activities to enable a more inclusive emergency online learning environment for digitally disadvantaged students.
期刊介绍:
Education for Chemical Engineers was launched in 2006 with a remit to publisheducation research papers, resource reviews and teaching and learning notes. ECE is targeted at chemical engineering academics and educators, discussing the ongoingchanges and development in chemical engineering education. This international title publishes papers from around the world, creating a global network of chemical engineering academics. Papers demonstrating how educational research results can be applied to chemical engineering education are particularly welcome, as are the accounts of research work that brings new perspectives to established principles, highlighting unsolved problems or indicating direction for future research relevant to chemical engineering education. Core topic areas: -Assessment- Accreditation- Curriculum development and transformation- Design- Diversity- Distance education-- E-learning Entrepreneurship programs- Industry-academic linkages- Benchmarking- Lifelong learning- Multidisciplinary programs- Outreach from kindergarten to high school programs- Student recruitment and retention and transition programs- New technology- Problem-based learning- Social responsibility and professionalism- Teamwork- Web-based learning