{"title":"使用密度泛函方法量化分子平衡中π-非共价相互作用的强度","authors":"Luka Nunar, Dr. Abil E. Aliev","doi":"10.1002/cmtd.202200044","DOIUrl":null,"url":null,"abstract":"<p>Different molecular balances were designed previously to compare noncovalent interactions. However, some balances are difficult to synthesise and there is a need for developing a computational approach. In this work, we probe noncovalent interactions of π systems using DFT methods to assess their reliability in reproducing experimentally measured conformer populations. Based on our results, the PW6B95D3 functional performed best, followed by M11L and ωB97XD. Additionally, the simulation of the rotation of the hydroxyl group revealed stabilising OH⋯Alkyne and OH⋯Nitrile interactions that are difficult to identify experimentally. These methods were then applied to compare the strengths of sulfur⋯π interactions in molecules which have not been explored experimentally. Compared to the hydroxyl counterpart, the simulation of the thiol group rotation showed that the geometry of the conformer with the two sulfur lone pairs oriented towards the aromatic ring or the double bond is stabilised, suggesting that S(LP)⋯π interactions can be attractive in nature. The ability of sulfur to rearrange its electronic surrounding to form an attractive interaction with π systems, including those with either electron-donating or withdrawing groups, was also confirmed. Overall, the results show a promising future for both qualitative and quantitative assessments of the strengths of noncovalent interactions using selected DFT techniques.</p>","PeriodicalId":72562,"journal":{"name":"Chemistry methods : new approaches to solving problems in chemistry","volume":"3 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2022-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202200044","citationCount":"0","resultStr":"{\"title\":\"Quantification of the Strength of π-Noncovalent Interactions in Molecular Balances using Density Functional Methods\",\"authors\":\"Luka Nunar, Dr. Abil E. Aliev\",\"doi\":\"10.1002/cmtd.202200044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Different molecular balances were designed previously to compare noncovalent interactions. However, some balances are difficult to synthesise and there is a need for developing a computational approach. In this work, we probe noncovalent interactions of π systems using DFT methods to assess their reliability in reproducing experimentally measured conformer populations. Based on our results, the PW6B95D3 functional performed best, followed by M11L and ωB97XD. Additionally, the simulation of the rotation of the hydroxyl group revealed stabilising OH⋯Alkyne and OH⋯Nitrile interactions that are difficult to identify experimentally. These methods were then applied to compare the strengths of sulfur⋯π interactions in molecules which have not been explored experimentally. Compared to the hydroxyl counterpart, the simulation of the thiol group rotation showed that the geometry of the conformer with the two sulfur lone pairs oriented towards the aromatic ring or the double bond is stabilised, suggesting that S(LP)⋯π interactions can be attractive in nature. The ability of sulfur to rearrange its electronic surrounding to form an attractive interaction with π systems, including those with either electron-donating or withdrawing groups, was also confirmed. Overall, the results show a promising future for both qualitative and quantitative assessments of the strengths of noncovalent interactions using selected DFT techniques.</p>\",\"PeriodicalId\":72562,\"journal\":{\"name\":\"Chemistry methods : new approaches to solving problems in chemistry\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2022-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202200044\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry methods : new approaches to solving problems in chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cmtd.202200044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry methods : new approaches to solving problems in chemistry","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmtd.202200044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Quantification of the Strength of π-Noncovalent Interactions in Molecular Balances using Density Functional Methods
Different molecular balances were designed previously to compare noncovalent interactions. However, some balances are difficult to synthesise and there is a need for developing a computational approach. In this work, we probe noncovalent interactions of π systems using DFT methods to assess their reliability in reproducing experimentally measured conformer populations. Based on our results, the PW6B95D3 functional performed best, followed by M11L and ωB97XD. Additionally, the simulation of the rotation of the hydroxyl group revealed stabilising OH⋯Alkyne and OH⋯Nitrile interactions that are difficult to identify experimentally. These methods were then applied to compare the strengths of sulfur⋯π interactions in molecules which have not been explored experimentally. Compared to the hydroxyl counterpart, the simulation of the thiol group rotation showed that the geometry of the conformer with the two sulfur lone pairs oriented towards the aromatic ring or the double bond is stabilised, suggesting that S(LP)⋯π interactions can be attractive in nature. The ability of sulfur to rearrange its electronic surrounding to form an attractive interaction with π systems, including those with either electron-donating or withdrawing groups, was also confirmed. Overall, the results show a promising future for both qualitative and quantitative assessments of the strengths of noncovalent interactions using selected DFT techniques.