Dr. Ansari Palliyarayil, Rajani Kumar Borah, Dr. Amit A. Vernekar
{"title":"磁性过氧化物酶纳米酶为微塑料去除和解构做准备","authors":"Dr. Ansari Palliyarayil, Rajani Kumar Borah, Dr. Amit A. Vernekar","doi":"10.1002/cmtd.202300012","DOIUrl":null,"url":null,"abstract":"<p>Plastic is an important commodity that is used in several sectors. However, plastic waste generation is a pressing issue and needs attention as it risks the environment. While methods such as landfilling, incineration and recycling are known for handling plastic waste, they have their own limitations like generation of secondary pollutants and the low quality of the recycled plastic. In this scenario, new methods and technologies for efficiently handling plastic waste are the need of the hour as it is aggravating the concern of pollution and its health risks. This highlight article predominantly focuses on the recently reported combinatorial approach (<i>Angew. Chem. Int. Ed</i>. <b>2022</b>, <i>61</i>, e202212013), where it has been shown that integrating the magnetic property of bare Fe<sub>3</sub>O<sub>4</sub> nanoparticles and nanozyme technology can be used for microplastic removal and degradation with nearly 100 % efficiency.</p>","PeriodicalId":72562,"journal":{"name":"Chemistry methods : new approaches to solving problems in chemistry","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202300012","citationCount":"0","resultStr":"{\"title\":\"Magnetic Peroxidase Nanozyme Gears Up for Microplastic Removal and Deconstruction\",\"authors\":\"Dr. Ansari Palliyarayil, Rajani Kumar Borah, Dr. Amit A. Vernekar\",\"doi\":\"10.1002/cmtd.202300012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Plastic is an important commodity that is used in several sectors. However, plastic waste generation is a pressing issue and needs attention as it risks the environment. While methods such as landfilling, incineration and recycling are known for handling plastic waste, they have their own limitations like generation of secondary pollutants and the low quality of the recycled plastic. In this scenario, new methods and technologies for efficiently handling plastic waste are the need of the hour as it is aggravating the concern of pollution and its health risks. This highlight article predominantly focuses on the recently reported combinatorial approach (<i>Angew. Chem. Int. Ed</i>. <b>2022</b>, <i>61</i>, e202212013), where it has been shown that integrating the magnetic property of bare Fe<sub>3</sub>O<sub>4</sub> nanoparticles and nanozyme technology can be used for microplastic removal and degradation with nearly 100 % efficiency.</p>\",\"PeriodicalId\":72562,\"journal\":{\"name\":\"Chemistry methods : new approaches to solving problems in chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2023-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202300012\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry methods : new approaches to solving problems in chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cmtd.202300012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry methods : new approaches to solving problems in chemistry","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmtd.202300012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Magnetic Peroxidase Nanozyme Gears Up for Microplastic Removal and Deconstruction
Plastic is an important commodity that is used in several sectors. However, plastic waste generation is a pressing issue and needs attention as it risks the environment. While methods such as landfilling, incineration and recycling are known for handling plastic waste, they have their own limitations like generation of secondary pollutants and the low quality of the recycled plastic. In this scenario, new methods and technologies for efficiently handling plastic waste are the need of the hour as it is aggravating the concern of pollution and its health risks. This highlight article predominantly focuses on the recently reported combinatorial approach (Angew. Chem. Int. Ed. 2022, 61, e202212013), where it has been shown that integrating the magnetic property of bare Fe3O4 nanoparticles and nanozyme technology can be used for microplastic removal and degradation with nearly 100 % efficiency.