基于vine copula先验的生存数据贝叶斯脊回归

IF 1.4 4区 数学 Q2 STATISTICS & PROBABILITY
Hirofumi Michimae, Takeshi Emura
{"title":"基于vine copula先验的生存数据贝叶斯脊回归","authors":"Hirofumi Michimae,&nbsp;Takeshi Emura","doi":"10.1007/s10182-022-00466-4","DOIUrl":null,"url":null,"abstract":"<div><p>Ridge regression estimators can be interpreted as a Bayesian posterior mean (or mode) when the regression coefficients follow multivariate normal prior. However, the multivariate normal prior may not give efficient posterior estimates for regression coefficients, especially in the presence of interaction terms. In this paper, the vine copula-based priors are proposed for Bayesian ridge estimators under the Cox proportional hazards model. The semiparametric Cox models are built on the posterior density under two likelihoods: Cox’s partial likelihood and the full likelihood under the gamma process prior. The simulations show that the full likelihood is generally more efficient and stable for estimating regression coefficients than the partial likelihood. We also show via simulations and a data example that the Archimedean copula priors (the Clayton and Gumbel copula) are superior to the multivariate normal prior and the Gaussian copula prior.</p></div>","PeriodicalId":55446,"journal":{"name":"Asta-Advances in Statistical Analysis","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian ridge regression for survival data based on a vine copula-based prior\",\"authors\":\"Hirofumi Michimae,&nbsp;Takeshi Emura\",\"doi\":\"10.1007/s10182-022-00466-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ridge regression estimators can be interpreted as a Bayesian posterior mean (or mode) when the regression coefficients follow multivariate normal prior. However, the multivariate normal prior may not give efficient posterior estimates for regression coefficients, especially in the presence of interaction terms. In this paper, the vine copula-based priors are proposed for Bayesian ridge estimators under the Cox proportional hazards model. The semiparametric Cox models are built on the posterior density under two likelihoods: Cox’s partial likelihood and the full likelihood under the gamma process prior. The simulations show that the full likelihood is generally more efficient and stable for estimating regression coefficients than the partial likelihood. We also show via simulations and a data example that the Archimedean copula priors (the Clayton and Gumbel copula) are superior to the multivariate normal prior and the Gaussian copula prior.</p></div>\",\"PeriodicalId\":55446,\"journal\":{\"name\":\"Asta-Advances in Statistical Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asta-Advances in Statistical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10182-022-00466-4\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asta-Advances in Statistical Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10182-022-00466-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

当回归系数遵循多元正态先验时,岭回归估计值可解释为贝叶斯后验均值(或模式)。然而,多元正态先验可能无法给出有效的回归系数后验估计值,尤其是在存在交互项的情况下。本文针对 Cox 比例危险模型下的贝叶斯脊估计器提出了基于藤状协方差的先验。半参数 Cox 模型建立在两种似然下的后验密度上:Cox 部分似然和伽玛过程先验下的完全似然。模拟结果表明,在估计回归系数时,完全似然通常比部分似然更有效、更稳定。我们还通过模拟和一个数据示例表明,阿基米德协程先验(克莱顿协程和 Gumbel 协程)优于多元正态先验和高斯协程先验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bayesian ridge regression for survival data based on a vine copula-based prior

Bayesian ridge regression for survival data based on a vine copula-based prior

Bayesian ridge regression for survival data based on a vine copula-based prior

Ridge regression estimators can be interpreted as a Bayesian posterior mean (or mode) when the regression coefficients follow multivariate normal prior. However, the multivariate normal prior may not give efficient posterior estimates for regression coefficients, especially in the presence of interaction terms. In this paper, the vine copula-based priors are proposed for Bayesian ridge estimators under the Cox proportional hazards model. The semiparametric Cox models are built on the posterior density under two likelihoods: Cox’s partial likelihood and the full likelihood under the gamma process prior. The simulations show that the full likelihood is generally more efficient and stable for estimating regression coefficients than the partial likelihood. We also show via simulations and a data example that the Archimedean copula priors (the Clayton and Gumbel copula) are superior to the multivariate normal prior and the Gaussian copula prior.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asta-Advances in Statistical Analysis
Asta-Advances in Statistical Analysis 数学-统计学与概率论
CiteScore
2.20
自引率
14.30%
发文量
39
审稿时长
>12 weeks
期刊介绍: AStA - Advances in Statistical Analysis, a journal of the German Statistical Society, is published quarterly and presents original contributions on statistical methods and applications and review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信