Huaxia Zhan, Haimeng Wu, Musbahu Muhammad, Simon Lambert, Volker Pickert
{"title":"将电动汽车电池充电和电池均衡集成在一个电路中","authors":"Huaxia Zhan, Haimeng Wu, Musbahu Muhammad, Simon Lambert, Volker Pickert","doi":"10.1049/els2.12031","DOIUrl":null,"url":null,"abstract":"<p>Electric vehicles (EVs) require an onboard battery charger unit and a battery management system (BMS) unit that balances the voltage levels for each battery cell. So far, both units are two completely autarkic power electronics systems. The circuit presented here operates as a battery charger when the EV is connected to the grid and as a voltage balancer when the EV is driving. Thus, the proposed circuit utilises two functions in one and therefore eliminates the need of having two autarkic units reducing complexity and reduction in component count. The proposed circuit operates as a flyback converter and achieves power factor correction during battery charging. The constant-current constant-voltage (CC–CV) charging method is employed to charge the batteries. However, to limit the number of sensors that will be employed as a result of varying cells during charging, the battery current is estimated using a single current transducer and embedding a converter model in the controller. The operation of the circuit is presented in detail and is supported by simulation results. A laboratory prototype is built to verify the effectiveness of the proposed topology. Experiment results show that the proposed method provides an integrated solution of on-board charging and voltage equalisation.</p>","PeriodicalId":48518,"journal":{"name":"IET Electrical Systems in Transportation","volume":"11 4","pages":"377-390"},"PeriodicalIF":1.9000,"publicationDate":"2021-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/els2.12031","citationCount":"5","resultStr":"{\"title\":\"Combining electric vehicle battery charging and battery cell equalisation in one circuit\",\"authors\":\"Huaxia Zhan, Haimeng Wu, Musbahu Muhammad, Simon Lambert, Volker Pickert\",\"doi\":\"10.1049/els2.12031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Electric vehicles (EVs) require an onboard battery charger unit and a battery management system (BMS) unit that balances the voltage levels for each battery cell. So far, both units are two completely autarkic power electronics systems. The circuit presented here operates as a battery charger when the EV is connected to the grid and as a voltage balancer when the EV is driving. Thus, the proposed circuit utilises two functions in one and therefore eliminates the need of having two autarkic units reducing complexity and reduction in component count. The proposed circuit operates as a flyback converter and achieves power factor correction during battery charging. The constant-current constant-voltage (CC–CV) charging method is employed to charge the batteries. However, to limit the number of sensors that will be employed as a result of varying cells during charging, the battery current is estimated using a single current transducer and embedding a converter model in the controller. The operation of the circuit is presented in detail and is supported by simulation results. A laboratory prototype is built to verify the effectiveness of the proposed topology. Experiment results show that the proposed method provides an integrated solution of on-board charging and voltage equalisation.</p>\",\"PeriodicalId\":48518,\"journal\":{\"name\":\"IET Electrical Systems in Transportation\",\"volume\":\"11 4\",\"pages\":\"377-390\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2021-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/els2.12031\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Electrical Systems in Transportation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/els2.12031\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Electrical Systems in Transportation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/els2.12031","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Combining electric vehicle battery charging and battery cell equalisation in one circuit
Electric vehicles (EVs) require an onboard battery charger unit and a battery management system (BMS) unit that balances the voltage levels for each battery cell. So far, both units are two completely autarkic power electronics systems. The circuit presented here operates as a battery charger when the EV is connected to the grid and as a voltage balancer when the EV is driving. Thus, the proposed circuit utilises two functions in one and therefore eliminates the need of having two autarkic units reducing complexity and reduction in component count. The proposed circuit operates as a flyback converter and achieves power factor correction during battery charging. The constant-current constant-voltage (CC–CV) charging method is employed to charge the batteries. However, to limit the number of sensors that will be employed as a result of varying cells during charging, the battery current is estimated using a single current transducer and embedding a converter model in the controller. The operation of the circuit is presented in detail and is supported by simulation results. A laboratory prototype is built to verify the effectiveness of the proposed topology. Experiment results show that the proposed method provides an integrated solution of on-board charging and voltage equalisation.